
Why study algebras over functors?

Algebras, Monads, and the proof of Beck’s monadicity theorem

Keeley Hoek

June 15, 2018

In this essay we present a development of the theory of monadic functors, naturally motivated first by ex-
amples in elementary abstract algebra, and then for understanding algebras over monads for their own sake. At
every stage, we present a development which persuades the reader that they could have obtained our results
themselves, by combining some inspiration with a propensity for “following their nose”. Indeed, we stumble
into discovering the special coequalisers needed in the famously unintuitive hypotheses of Beck’s monadicity
theorem—our main result. A proof of the this theorem is the ultimate payoff for our investment, which is given
in modern, “ethical1”, terms.

During the moments where a greater leap of creativity is required, we have structured the presentation so
that beautiful symmetries in the underlying structures are brought to the fore (a good example is the duality be-
tween the preservation and reflection of coequalisers, and whether the unit or counit of a particular adjunction
is invertible). Perhaps then at least the reader may identify similar patterns more easily in other contexts.

Beck’s theorem has wide-ranging implications, from classifying when algebras over endofunctors are the
same as algebras over monads, through the apparent connection between algebraic structures to monads (re-
lated to Lawvere theory), to the theory of descent in modern algebraic geometry and sheaf theory. Indeed, the
faithfully flat descent of Grothendieck’s famous FGA (and other works) is a special case of Beck’s theorem, and
the more modern work of Deligne on Tannakian categories exploits Beck’s theorem to place the theory on more
elegant foundations.

1 Algebras over endofunctors

We begin with a humble task; we seek to encode the idea of the many possible algebraic structures, such as
a monoids, or groups, or rings, in a category theoretic language. First, we have in mind some fixed category
of discourse C (for concreteness one could take C = Sets, but there is no reason to prefer this category over
Monoids, or even DiffMan!). We might claim that every algebraic structure on C is fundamentally the data of
how to take some collection of symbols “contained” in an object C ∈C , and combine them. If T (C) is an object
of C which collects for us all possible ways of forming combinations of elements of C , then the operations on
our algebraic structure could reasonably be the data of a (potentially quite complicated) morphism f : T (C) →C .
Of course, if our structure is to be at all general, a rule (morphism) for changing from one collection of symbols
C to another collection C ′ should be compatible with taking all combinations T (C) to those in T (C ′); therefore,
T : C →C should be a functor. We will call a pair (C , f) defining an instance of an algebraic structure of type or
signature T , an algebra over T . These considerations motivate the following formal definitions.

Definition 1.1. Given an arbitrary endofunctor T : C → C , we call a pair (C ∈ C , f : T (C) → C) an algebra over
the endofunctor T , or more concisely, a T -algebra. In this case, C is called the carrier of the algebra, and the
f : T (C) →C is called the structure map.

A morphism of T -algebras k : (C , f) → (C ′, f ′) is a morphism in the original category C which is compatible
with the algebra structure, in that the diagram

T (C) T (C ′)

C C ′

f

T k

f ′

k

is commutative.

1As opposed to the evil version of Mac Lane’s Categories for the Working Mathematician [11], for example.

1

Because we can stack the diagram defining algebra morphisms side-to-side, the composition of such mor-
phisms is still an algebra morphism. Furthermore, we have identities, and composition is associative because
composition in the original category is. Therefore, to each endofunctor T : C →C is associated a category Alg(T)
of T -algebras.

In order to test the utility of our construction, we will work in C = Sets and attempt to encode the idea of a
group. Indeed, every group G can be thought of an underlying set of the same name, equipped with

• a multiplication operation · : G ×G →G ,

• an inversion operation −1 : G →G , and

• an inverse element (the morphism) e : •→G (with • the 1-element set).

Together these three pieces of data define a morphism of sets G ×G tG t•→ G (with “t” the disjoint union of
sets), and so we are lead to define a functor T : Sets→ Sets on objects X by T (X) = X ×X tX t•→ X .

Every T -algebra for T defined in this way is thus a candidate for a structure of a group. However, decoding
arbitrary structure maps for these T -algebras need not lead to actual group structures—for any algebraic struc-
ture, there are some number of identities, or relations, which we must ensure are maintained. This cuts down
Alg(T) to some subcategory, but this is annoying—our implementation of relations in our algebraic structures
is entirely ad-hoc. There are some redeeming features however; for example, if (C , f) and (C ′, f ′) are actually
honest group structures, then an algebra morphism between them is a homomorphism of groups! Indeed, the
theory of algebras over endofunctors already possesses a rich theory.2

Of greater importance to us is the fact that all of the algebraic structures which we can quickly think of share
a few common operations; for one thing, every element of the carrier C ∈C can be included in a canonical way
into the collection of combinations of all such elements T (C) (this is just the “trivial combination”, consisting of
a single element). We would like a generic way into express this additional structure so that it is accessible to the
mathematics.

2 Algebras over monads

The choice of extra structure with which to equip endofunctors T : C →C in order to address the considerations
of the previous section are a matter of taste. One possibility is to ask first for a family of morphisms ηC : C → T (C)
which send each element of an object C ∈ C to the “trivial combination” consisting of that element in T (C),
and do so in a way which is natural with respect to T . Without knowing the underlying implementation of
the “operations” f of an instance (C , f) of an algebraic structure T , we will also require that for fixed T there
is a canonical way of resolving “combinations of combinations of elements of C ” into only “combinations of
elements of C ” (and again we would like this to be natural with respect to T). Thus, we also desire a natural
transformation µ : T 2 → T associated with T .

The structure we have just informally described is called a monad, and we take this opportunity to introduce
the formal definitions.

Definition 2.1. A monad (T,η,µ) in a category C is a monoid in the strict monoidal category End(C) of endo-
morphisms of C (the tensor product is composition). That is, a monad is a triple (T,η,µ) consisting of a functor
T : C →C , and a pair of natural transformations η : 1 → T and µ : T 2 = T T → T , such the diagrams

T 3 T 2

T 2 T

Tµ

µT

µ

µ

and

T 1 T 2 T 1

T

idT

Tη

µ
idT

ηT

(associativity) (identity)

commute. Morally, the first diagram attests to the fact that µ is “associative”, independent of the order in which
we collapse nested combinations, while the second diagram states that η is a double-sided unit of the collapsing
morphism µ in an appropriate sense.

In analogy with the case of algebras of an endofunctor above, we would like a notion of algebras over a
monad—we just demand that an algebra over a monad is an algebra over the underlying endofunctor, possessing
a generic compatibility between the monad structure and algebra structure:

2With a few towards initial algebras of an endofunctor see for example [2], and with a view towards free algebras see [9].

2

Definition 2.2. If (T,η,µ) is a monad in a category C , an algebra over the monad T is an algebra (C , f) over the
endofunctor T that is compatible with the monadic structure, in that the diagrams (we will drop the parentheses
from T (C) from now on)

T 2C TC

TC C

µ

T f

f

f

and

C TC

C

idC

ηC

f

(associativity) (identity)

commute. We will shortly see how the associativity and identity axioms for a T -algebra are concretely related to
the corresponding axioms for the signature (parent) monad T . A morphism of algebras over a monad is then just
a morphism of the underlying endofunctors.

We denote the category of all algebras over a monad T in a category C by C T . This category is also called
the Eilenberg-Moore category of T . We may also call such a pair (C , f) a (T,η,µ)-algebra, and if the algebras over
the endofunctor T are not also being considered in their own right, we often suppress the latter elements of the
tuple and simply write T -algebra.

Henceforth unless otherwise specified, by “algebra” we will mean an algebra over a monad. Given our defi-
nition of algebras (C , f) over T : C → C as simply an object of C equipped with some additional structure, we
immediately have access to a forgetful functor U T : C T →C which just forgets f . We will begin our investigation
by studying some properties of this forgetful functor. As a warm-up, we first observe a lemma which will come
in handy later on.

Lemma 2.3. Let T be a monad in C . Then the forgetful functor U T : C T →C reflects isomorphisms, in the sense
that if we ever have that U T k is an isomorphism for a morphism k in C T , then k was already an isomorphism.

Proof. Suppose that k : (C , f) → (C ′, f ′) is a morphism of T -algebras, and that U T k : C →C ′ is an isomorphism.
To show that U T reflects isomorphisms, it suffices to show that the inverse morphism k−1 = (U T k)−1 : C ′ →C is
a morphism of T -algebras. By definition this amounts to checking that f ◦T k−1 = k−1◦ f ′, but by the invertibility
of k this equation is simply a rearrangement of the statement that k is a morphism of T -algebras.

Given a forgetful functor, the natural question is “does this functor have an adjoint F T ?”. The following
proposition gives a positive answer! Indeed, taking the definition of monads and algebras over them at face
value, the existence of F T will seem a miraculous combination of the conditions we have placed on the struc-
tures involved. In contrast, there is no reason why we should expect an analogous result for algebras over endo-
functors. The proof is a excellent example of “following ones nose”.

Proposition 2.4. The forgetful functor U T : C T →C has a left adjoint F T : C →C T , with a unit ηT : 1 →U T F T ,
and a counit εT : F T U T → 1.

Proof. Given an object C ∈ C , we must pair another object C ′ ∈ C with a morphism TC ′ → C ′ in such a way
that we obtain at T -algebra. The only morphism which “unwraps a layer of T ” which we have at our disposal
is the component µC : T 2C → TC . Therefore, the only reasonable way to proceed is to define F T (C) = (TC ,µC).
The associativity axiom of a structure map is then immediately satisfied by the corresponding one for the parent
monad T , and similarly for the case of the identity axiom (in the latter, only one half3 of the diagram for the
monad T is required). The natural way to define F T on a morphism k : C → C ′ in C in order that we obtain
a morphism TC → TC ′ is by simply returning the result of acting on k with T , and so we must check that the
diagram

T 2C T 2C ′

TC TC ′

µC

T 2k

µC ′

T k

commutes in each case. Fortunately, this is precisely the condition that µ is natural!
Noting that our definition of F T gives that T = U T F T , we immediately recognise η : 1 → T = U T F T as a

candidate for the unit of an adjunction. We similarly seek a natural transformation εT : F T U T → 1. For each

3One might find this asymmetry unsatisfying, but this concern will soon be beautifully rectified!

3

T -algebra (C , f), we require a morphism (TC ,µC) →C , which is just an underlying morphism (satisfying a con-
dition) TC →C . The “only option” is thus f itself, and hence we take ε(C , f) = f . That ε(C , f) is then a morphism of
T -algebras follows immediately from the associativity axiom for the monad T . Naturality of ε is the requirement
that for every morphism k : (C , f) → (C ′, f ′) of T -algebras the square

F T U T (C , f) (C , f)

F T U T (C ′, f ′) (C ′, f ′)

ε(C , f)

FU T k k

ε(C ′ , f ′)

i.e.

(TC ,µC) (C , f)

(TC ′,µC ′) (C ′, f ′)

f

T k k

f ′

commutes. This is precisely the statement that every such k is a morphism of T -algebras, which is true by
hypothesis.

The triangle identities are then

TC T 2C

TC

idTC

TηC

µC and

C TC

C

idC

ηC

f .

The former is just the half of the identity axiom of the monad T which we didn’t use above, and the latter is the
identity axiom for T -algebras. This completes the proof. (In future we will generally become more terse when
verifying auxiliary conditions, such as the triangle identities for adjunctions for example.)

Intuitively, a left adjoint to a forgetful functor should be a “free functor”, and so this motivates the name free
T -algebra functor for F T above. Moreover, we call F T (C) = (C ,ηC) the free T -algebra on C in C (these are honest
free objects satisfying a universal property in C T).

By the previous proposition, we can associate an adjunction (F T ,U T ,η,ε) to every monad (T,η,µ) in a cat-
egory C . In fact, all of the data presented in this adjunction can be used to immediately recover the monad;
we have U T F T = T , and η is present in both tuples. Furthermore, from the definition of ε above we see that
εF T (C) =µC as a morphism in C T for every C ∈C . Hence we have the equation4

(T,η,µ) = (U T F T ,η,U T εT F T).

Of course, one immediately wonders whether we can obtain monads from general adjunctions; in fact, attempt-
ing the same construction as that executed above leads directly to the following proposition.

Proposition 2.5. Every adjunction (F,G ,η,ε) : C →D gives rise to a monad (GF,η,GεF).

Proof. We only need to check the monad associativity and identity axioms. It is a fact, by the well-definedness
of horizontal composition of natural transformations, that for arbitrary adjunctions and D ∈D the diagram

FGFGD FGD

FGD D

εFGD

FGεD

εD

εD

(1)

commutes. Applying G to this diagram, and taking D = FC for C ∈ C , we obtain the associativity axiom. Each
triangle of the identity axiom is obtained by applying F or G to one of the triangle identities for the adjunction.

We now return to the example of the previous section, reformulating algebraic groups as T -algebras over
some monad T —in fact, our present developments permit this to be done in a canonical way. We begin with
only the data of the forgetful functor U : Groups → Sets. Up to isomorphism, U completely determines the free
group functor F and indeed the entire adjunction (F,U ,η,ε) : Sets → Groups. Then by the previous proposition,
we get a monad (T,η,µ) = (FU ,η,UεF). We will briefly sketch the properties of a T -algebra (S,h) ∈ SetsT :

4For convenience, we have employed the notation εF T for the natural transformation defined in components by (εF T)C = εF T (C).

4

• The morphism h : T S → S, which we will suggestively call the multiplication, is just a function from the
underlying set of the free group on S to S which is subject to two diagram identities. In this way, the set T S
is in a concrete sense the “container of all combinations of elements of S”, despite the fact that T has been
indirectly constructed.

• As elements of sets, we have ηS (x) = 〈x〉 ∈ T S, with ηS sending objects of S to the word in one element on
them; this is morally what we specified that ηS should do. The identity axiom for the algebra is then just
the statement that h(〈x〉) = x for every x ∈ X (and so specifies h on the 1-element words).

• By inspection, the morphism µC : T 2S → T S sends a word in words on elements of S to a single word
formed by their concatenation (the inverse of a word is sent to the inverse of its constituent atoms taken in
reverse order). The associativity axiom for the algebra is then the statement that h(〈xh(〈y z〉)〉) = h(〈x y z〉) =
h(〈h(〈x y〉)z〉) (and similarly for longer words). If h is interpreted as a rule for multiplying the elements of
the word passed to it, this is exactly the statement of associativity of the multiplication!

Thus, the monad algebra axioms conspire to require that we exactly have the data of a group multiplication
(details such as the identity are compactly encoded as h(〈〉) using the empty word, and inverses are similar).

In this way we have encoded the definition of a group as exactly the monad T . If one wished, they could
now completely forget5 the definition of a group in terms of an underlying set, a binary operation, an inverse
operation, identity, and some relations, and instead decide that a group is just any algebra over the monad T !
Even more remarkably, we recovered all of this information from the forgetful functor U : Groups→ Sets alone!

Of course, giving a monad (T,η,µ) (or in this case U) is considerably more structure than just giving its un-
derlying endofunctor T . Indeed, forgetting all but the endofunctor in our example of the group signature monad
above leaves only a functor which takes a set and gives the free group on that set as a set—and there are many
more algebras over this endofunctor than there are groups! Thus one might be concerned that the monad axioms
might excessively restrict the kinds of structures they can represent. However, by the end of our development we
will establish a partial correspondence6 between algebras over endofunctors and algebras over monads which
greatly restores this confidence.

Given the present example, we must stress that the motivation given here for conceiving of the idea of mon-
ads, though natural and having elementary roots, is by no means the only perspective. As we noted above mon-
ads are also just particular monoid objects in an endofunctor category, or put differently again (and much less
precisely), categorifications of idempotents ([16]). Indeed, historically7 the dual notion of comonads came be-
fore the monads themselves, with the former appearing in the study of homological algebra of Godement [7].

3 Comparison and monadicity

Given an adjunction (F,G ,η,ε), we have just seen that we can obtain an associated monad (T,η,µ) = (GF,η,GεF).
We can then construct a second adjunction (F T ,U T ,η,εT), now associated to this monad. Although we can
recover they same monad from both adjunctions, they need not be equivalent8.

Going forward, a central consideration will be to understand how the original adjunction compares to the
one derived from the Eilenberg-Moore construction. If an adjunction is “very close” to the one derived from its
monad, we can consider as information that the original adjunction was “close” to an algebraic one. In order to
make this precise, we introduce the following definition.

Definition 3.1. Let (F : C → D,G ,η,ε) and (F ′ : C → D′,G ′,η′,ε′) be adjunctions. A functor X : D → D′ is a
comparison of the former to the latter adjunction if the triangles

C D

D′
F ′

F

X and

C D

D′

G

X
G ′

commute up to natural isomorphism. A comparison is strict if these diagrams are exact equalities.

5If the reader is dismayed by the prospect of having to retain knowledge of the domain of discourse Sets (or considers this overly restric-
tive), the should pursue the study of Lawvere theory ([14] is a famous text on the subject).

6This is Theorem 7.2.
7A brief history of the development of monads is given in [11].
8However, interpreted in a suitable 2-categorical sense, these are (incredibly) adjoint notions! See [15].

5

A comparison of the above type is of little use if it does not exist. The following proposition establishes that
we always have a comparison between an arbitrary adjunction and the corresponding adjunction derived from
the Eilenberg-Moore construction.

Proposition 3.2. Let (F,G ,µ,ε) : C →D be an adjunction, and let (T,µ,GεF) be the monad constructed therefrom.
Furthermore, let (F T ,U T ,µ,εT) be the adjunction obtained from T via the Eilenberg-Moore construction. Then
there exists a unique strict comparison X : D →C T .

Proof. By direct calculation, we will propose a definition for the value of the strict comparison functor X : D →
C T on objects and morphisms based on its stated properties. We will then verify uniqueness.

To show existence, we must construct a functor X : D → C T such that U T X = G , and X F = F T . On objects,
this X acts as X (D) = (xD ,hD) for xD ∈ C an object and hD : T xD → xD a morphism. In this language, the
first condition U T X = G says that on objects D ∈ D we have xD = GD . The second condition requires that
(xFC ,hFC) = (TC ,µC) = (G(FC),G(εFC)) for every C ∈ C . We must define X on all of D, and so we make the
definition hD = GεD for all D ∈ D. The identity axiom for T -algebras is just one of the triangle identities (and
thus holds). Meanwhile, the commutativity of the associativity square is a general fact about adjunctions which
follows again from (1). Finally, the comparison conditions give the definition U T X (f : D → D ′) = G(f), and
naturality of ε ensures that this is always a morphism of T -algebras. It is then immediate that these definitions
for X actually define a functor.

It remains to ensure that our “choice” of hD above is actually determined by the fact that X is a comparison.
To do this, we could directly calculate using the definition of a comparison and the triangle identities. However,
this is just a specific instance of a general fact9 about morphisms of adjunctions (in this case we have a pair
X : D → C T and 1 : C → C , and they together define a morphism of adjunctions because F a G and F T a U T

have an identical unit); we always have εT
X D = X (εD). Unwrapping definitions, this equation becomes hD =GεD ,

and this completes the proof.

The encroachment of the evil notion of “strict” comparison functors may appear at first quite concerning.
However, the existence of a canonical and even unique strict comparison functor will serve to greatly simplify
some of the arguments which follow, and regardless it is straightforward to modify all of our strict arguments
into ones that hold for any functor isomorphic to X . Indeed, it easily seen that relaxing the strictness condition
in the above proof gives that comparisons of the above type are unique up to isomorphism.

Given the previous proposition, it makes sense to refer to the comparison functor associated to an arbitrary
adjunction (F,G ,η,ε) (we implicitly compare the adjunction to the (F T ,U T ,η,εT) construction). If this compari-
son functor is actually an equivalence of categories, then the functor G is called monadic (i.e. G is monadic if G
has a left adjoint, and the comparison corresponding to this adjunction is an equivalence).

There is great value in knowing that a given functor under investigation is monadic, and our main goal from
now on will be to determine this in general. For one thing, it will follow as a consequence of our development
that the forgetful functor from the category of algebraic structures (made precise in a suitable sense) is monadic,
a fact which we can also manually check with relative ease in familiar categories such as Groups, Rings, and
Vec. If a functor U is monadic, it is therefore “algebraic” in the concrete sense that it behaves the same way as a
forgetful functor from an algebraic structure would. However, algebra is by no means the only context to which
monadicity is relevant; monadic functors also play a critical role in the theory of monadic descent (as suggested
by the name), generalising Grothendieck’s ideas of descent in sheaf theory ([8, 5]).

4 Assorted cutlery: our new best friends (or, Forks)

In this section we will study the properties of the comparison functor X : D →C T defined above. In doing so, we
will begin to assemble the machinery necessary to decide whether X is an equivalence.

If only motivated by the intention to remove a redundant arrow, we first observe that the associativity axiom
for a T -algebra (C , f) is exactly encoded in the commutative diagram

T 2C TC C .
µC

T f

f
(2)

Pursuing our new notation further, we see that the identity axiom gives a right inverse ηC of f , while one of the
identity laws for the entire monad T provides that ηTC is a right inverse of µC . This data might be encoded in the

9See §IV.7 of [11].

6

diagram

T 2C TC C .
µC

T f

f

ηTC ηC

(3)

There is no reason to expect that ηTC is also a left inverse of T f . However, naturality of η does give that the
compositions T f ◦ηTC and ηC ◦ f are equal!

We have just discovered an extremely general construction. Indeed, the commuting diagram of the type of
(2) is known as a fork. Even more remarkably, (noncommutative) diagrams of the type of (3) along with the
relations we obtained along with it are known as splittings of the above fork. We immediately introduce the
formal definitions:

Definition 4.1. A fork (or sometimes, cofork) is a triple of three morphisms h,h′,k in a category C , specified by
the structure and commutativity of the diagram

C C ′ C ′′h

h′
k . (4)

We say that k defines a fork on the parallel pair (h,h′).
A splitting of the fork specified above is a pair of “section” morphisms s : C ′′ → C ′ and r : C ′ → C as in the

(noncommutative) diagram

C C ′ C ′′h

h′
k

r s

, (5)

such that we have the equalities k ◦ s = idC ′′ , h ◦ r = idC ′ , and h′ ◦ r = s ◦k. The name is inspired by a splitting of

short exact sequences C
h−→C ′ k−→C ′′ in homological algebra, with an extra condition added to give compatibility

between h′ and the splitting morphisms. A fork with a splitting is said to be split.

We now turn to the question of characterising the diagram (3), and in particular, how the morphism f can be
substituted for another morphism while preserving the fact that we have a split fork. After making the following
definition, which specifies how forks can be universal among all those on the same parallel pair, we will see that
in fact we have very little choice at all.

Definition 4.2. A morphism k in a fork (4) is a coequaliser of the parallel pair (h,h′) if it is universal in the
following sense: For every other morphism l : C ′ → A defining a fork on (h,h′), there exists a unique morphism
l̂ : C ′′ → A such that the diagram

C C ′ C ′′

A

h

h′
k

l
l̂

commutes. If the morphism k : C ′ → C ′′ in question is clear from context, we sometimes call the object C ′′ the
coequaliser (which is justified to the extent that it is unique up to unique isomorphism).

In fact, the following lemma shows that the split fork of (3) identified above specifies a coequaliser for very
general reasons.

Lemma 4.3. If a fork (4) is split, then k is a coequaliser of the pair (h,h′).

Proof. For any morphism l : C ′ → A defining another fork on (h,h′), we have a (noncommutative) diagram

C C ′ C ′′

A

h

h′
k

l

r s

for s and r together a splitting for the upper fork. Then, such morphisms l are in bijection with morphisms
m : C ′′ → A by the maps (we just use the morphisms k and s fix the source and target) l 7→ l ◦ s and m 7→ m ◦k.
Indeed, we can directly compute (l ◦s)◦k = l ◦(h′◦r) = (l ◦h)◦r = l and (m◦k)◦s = m◦(k ◦s) = m. This is exactly
the universal property stating that k is a coequaliser, as desired.

7

Thus the parallel pair (µC ,T f) = (UεFC ,U F f) is always part of a split fork. We call the pair (εFC ,F f) is U -split,
because it is split under the image of U .

Our overarching goal is to determine when the comparison functor X : D → C T is an equivalence of cat-
egories. As every equivalence can be refined into an adjoint equivalence, in this case X would certainly have
to have a left-adjoint Y : C T → D. The preceding discussion, wishful thinking, and the fact that universality of
coequalisers hints at being able to select objects and morphisms in a functorial way, then leads us to consider
the following proposition.

Proposition 4.4. Suppose that D has coequalisers of U -split pairs. Then the comparison functor X : D →C T has
a left adjoint Y : C T →D.

Proof. For each (C , f) ∈ C T , by the discussion above we have a split fork (we have simply expanded (3) using
T =U F)

U FU FC U FC C .
µC

U F f

f

ηU FC ηC

(6)

Now, we have µC = UεFC , and therefore the pair (εFC ,F f) is U -split. Therefore, by hypothesis there exists a
coequaliser morphism q(C , f) : FC → Y (C , f) in D for this parallel pair (and we define the functor Y on objects in
this way). This fits into a coequaliser fork diagram (using the fact that µC =U (εFC))

FU FC FC Y (C , f).
εFC

F f

q(C , f)
(7)

We now need to define Y on morphisms. To this end, let φ : (C , f) → (C ′, f ′) be arbitrary. In order to identify
what the image ofφunder Y must be, we juxtapose the natural diagrams we have involving Y (C , f ′) and Y (C ′, f ′)
(these diagrams constitute our only information regarding the definitions of Y (C , f ′) and Y (C ′, f ′)!):

FU FC FC Y (C , f)

FU FC ′ FC ′ Y (C ′, f ′)

εFC

F f

FU Fφ

q(C , f)

Fφ

εFC ′

F f ′

q(C ′ , f ′)

. (8)

Our goal is to factor q(C ′, f ′) ◦Fφ through q(C , f) by the fact that the latter is a coequaliser, and therefore obtain
a morphism Y φ : Y (C , f) → Y (C ′, f ′). We are in luck; each of the two superimposed squares above commute
respectively by the naturality of ε, and by simply applying F to the diagram stating that φ is a morphism of
T -algebras. Therefore the composition q(C ′, f ′) ◦ Fφ is a fork on the parallel pair (εFC ,F f), from which it fol-
lows immediately from the universal property of coequalisers that there is a unique morphism Y φ : Y (C , f) →
Y (C ′, f ′) so that q(C , f) ◦Y φ = q(C ′, f ′). We define Y on morphisms in this way, and it follows quickly from the
universal property of coequalisers that Y is a functor.

It remains to provide a unit and counit for the claimed adjunction. First, to construct the unitσ : 1 → X Y , for
each (C , f) ∈ C T we must provide a morphism σ(C , f) : (C , f) → X Y (C , f) = (U Y (C , f),UεY (C , f)). This is just an
underlying morphism C →U Y (C , f) in C which obeys the T -algebra conditions. Our definition of the functor Y
is essentially provided by diagrams of the form (7), and we have little choice in how to obtain a morphism with
target U Y (C , f) therefrom; we must apply the functor U to the diagram! This gives

T 2C TC U Y (C , f),
µC

T f

U q(C , f)

after using the definitions of T and µC to tidy up the labels somewhat. This diagram strongly resembles that of
the split fork (6), which we used to bootstrap the entire construction of Y . Indeed, because of the presence of a
splitting, the coequaliser morphism f : TC →C fits into the above diagram. If the image of the coequaliser q(C , f)

under U remained a coequaliser, then we would be able to make the strong conclusion that C ∼=U Y (C , f) in a
unique way. Unfortunately, this need not be the case. Instead, the coequaliser universal property gives a unique
morphism σ(C , f) : C →U Y (C , f) fitting into the commutative diagram

T 2C TC U Y (C , f)

C ,

µC

T f

U q(C , f)

f
σ(C , f)

8

and this is precisely how we will define σ. In doing this for each (C , f) ∈ C T we must check that we obtain a
morphism in C T , and not just C . However, the necessary commuting square follows after expressing the “upper
path” using the pair of double forks in (8) used to define Y on morphisms, and the lower path as the coequaliser
q(C , f) (by definition). The universal property of coequalisers then forces the diagram to commute. By using
the trick above of obtaining two forks and a pair of commuting superimposed squares therefrom, the universal
property of coequalisers also gives immediately that the components of σ are natural.

In order to define the counit τ : Y X → 1, for each D ∈D we must give a morphism τD : Y X D = Y (U D,UεD) →
D (and these morphisms must be compatible). We proceed in a very similar way to that above; first, the diagram
in which the source object of this morphism naturally appears (indeed, the diagram defines Y (U D,UεD) up to
isomorphism) is

FU FU D FU D Y (U D,UεD)

D,

εFU D

FUεD

q(U D,UεD)

εD (9)

where we have inserted the morphism εD for our imminent convenience. By the fact that q(U D,UεD) is a co-
equaliser, we immediately get a unique factoring of εD : FU D → D as τD ◦ q(U D,UεD) = εD , and so this provides
our desired morphism τD . Once again, by using the “superimposed squares built from forks trick”, we easily
verify that these components define a natural transformation τ. Finally, the triangle identities are also proved by
this trick; for the one involving Y , we now focus on the pair of forks used in the definition of Y on morphisms,
while for the triangle involving X , we juxtapose the forks defining the components of σ and τ.

5 On the unreasonable effectiveness of coequalisers

It would be dishonest at this point to conclude the proof of Proposition 4.4 without a minor digression which
helps to explain the success we had with our method of constructing the left adjoint. First note that, despite the
fact that the hypothesis of the proposition demands that “D has coequalisers of U -split pairs”, we only applied
this property to diagrams of the form (e.g. in (7))

FU FC FC .
εFC

F f

There, we asked for a coequaliser morphism to fill the place of the dotted arrow. We could therefore ask for the
existence of coequalisers of only these diagrams, and still obtain our desired left adjoint.

Furthermore, when defining the counit τ of the adjunction Y a X for example, we extended this diagram in
the case C =U D by filling in the dotted arrow with εD . In doing this, we have actually arrived at yet another very
general construction which is possible for any adjunction (F,G ,η,ε) : C → D. Namely, in (9) we drew for each
D ∈D a diagram

FGFGD FGD D
εFGD

FGεD

εD . (10)

In fact, this is a fork by the naturality diagram of ε associated to the morphism εD : FGD → D ! It is famously called
the canonical resolution or canonical presentation of D for the adjunction, for in the case of the free-forgetful
adjunction Groups → Sets it presents arbitrary groups G as the quotient of the free group on the elements of G
(the quotient is expressed10 as a coequaliser).

Specialising to the case (F,G ,η,ε) = (F T ,U T ,η,ε) for T a monad, the canonical resolution diagram for (C , f) ∈
C T is

F T U T F T C F T C (C , f)
εF T C

F T U T ε(C , f)

ε(C , f)
,

which upon evaluating the definitions of the functor involved and relabelling is just

(T 2C ,µTC) (TC ,µC) (C , f)
µC

T f

f
. (11)

Applying U T to the diagram, we obtain the fork which we have already11 seen, in (2); it originally catalysed our
investigation of coequalisers and in fact splits. Because the splitting morphisms ηC and ηTC are not morphisms

10In particular, one of the parallel morphisms takes a word in words in group elements and evaluates the innermost words using the group
multiplication, while the other simplifies words in words down to a single word in the generic way.

11Indeed, there truly is a conspiracy afoot!

9

of T -algebras (in general), there is no reason why (11) should split. Regardless, the existence of a coequaliser
after applying U T may be used to bootstrap obtaining one for the original diagram. This is the content of the
following proposition, where we simply manually check that we can transport a coequaliser from one category
to the other. It is a good example of the style of argument we will use to prove facts specifically about C T and the
functor U : C T →C ; this will become of central importance in the next section.

Proposition 5.1. For any (C , f), (C ′, f ′) ∈C T and k : (TC ,µC) → (C ′, f ′) making the diagram

(T 2C ,µTC) (TC ,µC) (C , f)

(C ′, f ′)

µC

T f

f

k
k̂ (12)

commute (excluding the dotted arrow), there exists a unique k̂ : (C , f) → (C ′, f ′) such that k̂ ◦ f = k.

Proof. We only briefly sketch the proof, because a more general version is included in the content of Proposi-
tion 6.3 of the next section. Using the fact that the top row of (12) splits under U T we obtain a factoring k = k̂ ◦ f
of underlying morphisms in C , and k̂ is our candidate to be upgraded to a morphism in C T . Combining the
squares which state that f and k are morphisms of T -algebras, we once again use the fact that f is a coequaliser
in C in order to conclude that k̂ is a morphism of T -algebras as well. Uniqueness of k̂ then follows from the fact
that U T is faithful.

By definition, we have that τ is a natural isomorphism if and only if ε(C , f) appears as a coequaliser in the
canonical resolution of the T -algebra (C , f). It is an elementary theorem of category theory that X is fully faithful
if and only is the counit τ is invertible, and so τ on its own gives information about the comparison functor X .
This property turns out to be of central importance in the theory of monadic descent ([8]), where in this case X
is said to be of descent type. This provides another example of how canonical resolutions appear as a convenient
language in which to speak about properties of the comparison functor X , and related ideas.

We conclude this section by establishing a partial12 converse to Proposition 4.4, using the concept of canon-
ical resolutions introduced above. The proposition requires the following small (but beautiful) observation.

Lemma 5.2. Suppose that the (strict) comparison functor X : D →C T above has a left adjoint Y : C T →D. Then
Y F T ∼= F .

Proof. We have Y a X , F T aU T , and F aU . Composing adjunctions, we thus have that Y F T aU T X ∼=U . By the
uniqueness of adjoints up to isomorphism, we thus have the desired isomorphism Y F T ∼= F .

What follows is the bedrock on which we found the remainder of our explorations. It ensures that the con-
ditions investigated in Proposition 4.4 are far from unobtainable; indeed (under a suitable weakening of the
hypotheses of that proposition), it establishes a converse and hence equivalence.

Proposition 5.3. Suppose that the comparison functor X : D → C T associated to an adjunction (F,U ,µ,ε) has a
left adjoint Y : C T →D. Then for every (C , f) ∈C T the parallel pair

FU FC FC
εT

FC

F f
(13)

has a coequaliser in D.

Proof. By Proposition 5.1 above, the canonical resolution of a T -algebra (C , f) defines a coequaliser in C T . Given
the observation of Lemma 5.2, the idea is simply to apply Y to (11), yielding

Y F T TC Y F T C Y (C , f)
Y εT

F T C

Y F T f

Y f
.

Critically, left adjoint functors preserve all colimits and in particular coequalisers, and therefore Y f is a co-
equaliser. By the natural isomorphism of Lemma 5.2, it suffices to show that Y εT

F T C
= εY F T C —as then by pre-

and post-composition with the components of the natural isomorphism we will obtain a coequaliser of a paral-
lel pair matching (13). We could directly compute this using the homset bijections of the adjunctions, but this a
general fact given that Y is the left adjoint to a comparison functor X (which is a morphism of adjoints, see §IV.7
of [11]).

12The proposition is a full converse when the weaker hypothesis described above is used in the statement of Proposition 4.4.

10

6 Beck’s monadicity theorem

As we noted above when constructing the unit of the adjunction Y a X , the coequalisers q(C , f) : FC → Y (C , f)
for (C , f) ∈ C T need not be sent to coequalisers under the functor U : D → C . However, this would exactly
be the case if U preserves coequalisers of U -split pairs. Then, the universality of coequalisers would imply that
there is a unique isomorphism (C , f) →U Y (C , f) in C T , and this isomorphism would exactly be the component
σ(C , f). This would therefore makeσ into a natural isomorphism. It is also timely to introduce the notion in some
sense dual to preservation of coequalisers; we say U reflects coequalisers of U -split pairs if every fork which has
a U -split image is itself already a coequaliser. The above observation then proves the first part of the following
proposition.

Proposition 6.1. Suppose that D has coequalisers of U -split pairs, so that the comparison functor X : D →C T is
part of an adjunction (Y , X ,σ,τ) : C T →D by Proposition 4.4. Then

• if in addition U preserves coequalisers of U -split pairs, the unit σ is an isomorphism, and (independent of
this point)

• if in addition U reflects coequalisers of U -split pairs, the counit τ is an isomorphism.

Proof. The dual observation for the counit τ is only slightly more subtle; fix D ∈D. Applying U to diagram (9), we
recognise the bottom row as the (C , f) = X D special case of the split fork of (3). If then U reflects coequalisers of
U -split pairs, we would be able to conclude that the morphism εD was a coequaliser in the original diagram. By
definition q(U D,UεD) is a coequaliser in this original diagram and hence there is a unique isomorphism Y X D =
Y (U D,UεD) → D again by the universal property of coequalisers. This isomorphism is exactly the component
τD , and therefore τ is a natural isomorphism in this case as well.

By the remarks of the previous section, it follows that the second condition of Proposition 6.1 is a sufficient
condition for U to be of descent type.

We are nearing our primary goal; together, Propositions 4.4 and 6.1 establish a collection of conditions that
when satisfied imply that a given functor U : D →C with a left adjoint F is monadic. Indeed, we have proved the
following proposition.

Proposition 6.2. Let U : D →C be a functor. Then if

• the category D has coequalisers of U -split pairs, and

• the functor U has a left adjoint, and preserves and reflects coequalisers of U -split pairs,

then U is monadic.

Proof. If the category D has coequalisers of U -split pairs then for T = FU , the comparison functor X : D → C T

of Proposition 3.2 fits into an adjunction (Y , X ,σ,τ) : C T → D. If U both preserves and reflects coequalisers of
U -split pairs, then Proposition 6.1 provides that the unit σ : 1 → X Y and counit τ : Y X → 1 are both actually
natural isomorphisms. Hence, they together witness the fact that the functors Y : C T → D and X : D → C T

together give an equivalence of categories. Therefore U is monadic.

One is eager to determine exactly how close these conditions are to being sufficient, in the hope that the
distance is not too great. We first turn to checking the obvious and most extreme case.

Considering the adjunction (F T ,U T ,η,εT) : C → C T for a fixed monad T , the comparison X : C T → C T

must be the identity by the uniqueness result of Proposition 3.2. The identity functor on C T → C T is certainly
an equivalence of categories, and therefore if these conditions are to have any power whatsoever13, the category
C T and functor U T must satisfy them. This is the content of the following proposition.

Proposition 6.3. For T a monad in C , we have that

• the category C T has coequalisers of U T -split pairs, and

• the forgetful functor U T : C T →C both; (i) preserves, and (ii) reflects coequalisers of U T -split pairs.

13This claim is not entirely honest. For, in the previous section we have shown above that we have a left adjoint to X exactly when we have
existence in D of coequalisers of the parallel pairs in the canonical resolutions of T -algebras. As X : C T → C T certainly has a left adjoint,
these properties are then automatic for U T . However, the content of Proposition 6.3 wholly supersedes the conditions of Proposition 5.3 in
a nontrivial way, strengthening them to the existence in C T of coequalisers of all U T -split pairs.

11

Proof. We will actually prove a stronger version of the proposition statement, which implies the claimed result.
Indeed, let the diagram

C C ′ C ′′h

h′
k

define a coequaliser (and fork) in a category C . This coequaliser is absolute if for any functor J : C → A to any
other category A the image fork

JC JC ′ JC ′′Jh

Jh′
Jk

is always still a coequaliser (in the new category A). One might wonder at first how this is possible, but we have
an obvious class of examples at our disposal; namely, as a split fork is certainly taken to a split fork by any functor,
every split fork defines an absolute coequaliser. It remains to show that the hypotheses of the proposition hold
with “split” replaced by “absolute” (in analogy with the “split” case, a parallel pair is U -absolute if its image under
U is an absolute coequaliser).

To this end, suppose we have a parallel pair

(C , f) (C ′, f ′)
h

h′

that in the image of U T has an absolute coequaliser, as in the diagram (we have slightly abused notation by
omitting U T on morphisms)

C C ′ C ′′.
h

h′
q

We desire a morphism g : TC ′′ → C ′′ such that (C ′′, g) is a T -algebra, and to have g so chosen that q : (C ′, f ′) →
(C ′′, g) is a morphism of T -algebras. Then if this q is actually a coequaliser in C T we will have established point
(ii). Point (i) is immediate by combining (ii) with the trivial fact that U T q = q (abusing notation).

Hence we need a morphism g : TC ′′ → C ′′, and we already have a general method when dealing with co-
equaliser forks for obtaining one. Namely, we draw a diagram of two juxtaposed coequaliser forks

TC TC ′ TC ′′

C C ′ C ′′

f

T h

T h′
T q

f ′

h

h′
q

such that the superimposed squares both commute (in this case they state that h and h′ are each respectively
T -algebra morphisms). Indeed, the lower-right morphism is a coequaliser by hypothesis, and the upper-right
morphism is a coequaliser because q is an absolute one. As before, the composition q ◦ f ′ is therefore a co-
equaliser of the upper fork, and factors uniquely through T q to give the desired morphism g : TC → T . Because
the inclusion of g into the above diagram preserves commutativity, this will also show that q is a morphism
(C ′, f ′) → (C ′′, g) of T -algebras! (Technically, we have not yet established that (C ′′, g) is actually a T -algebra.)

To check that g satisfies the T -algebra structure map identity axiom, we take the right-hand square of the
diagram above and redraw it with the morphisms g , ηC ′ , and ηC ′′ included so that the result is still commutative;

C ′ C ′′

TC ′ TC ′′

C ′ C ′′

q

ηC ′

idC ′

ηC ′′

idC ′′T q

f ′ g

q

.

The diagram immediately gives q = g ◦ηC ′′ ◦q . But q is a coequaliser and therefore the composite g ◦ηC ′′ is the
unique such morphism k : C ′′ →C ′′ such that q = k ◦q . The identity morphism certainly satisfies this property,
and hence g ◦ηC ′′ = idC ′′ , as desired. In other words, we have used the fact that coequalisers are epimorphisms.
The associativity axiom is proved in a completely analogous manner—we simply compare to the statement that
the axiom holds for (C ′, f ′), and then use the fact that q is a coequaliser.

12

It remains to show that q is actually a coequaliser in C T ; to this end, let p : (C , f) → (A,h) be any morphism
which has equal postcomposites with h and h′. Then p has underlying morphism C ′ → A, and hence by the fact
that q is a coequaliser in C there exists a unique k : C ′′ → A such that k ◦q = p. Diagrammatically, we have

TC ′ TC ′′ T A

C ′ C ′′ A

f ′

T q

T p

g

T k

h

q

p

k

where the diagram is commutative without the dotted arrows, and additionally the top and bottom half-circles
commute with the dotted arrow included. But this means that

(h ◦T k)◦T q = h ◦T p = (p ◦ f ′) = k ◦ (q ◦ f ′) = (k ◦ g)◦T q.

Because q is an absolute coequaliser, T q is a coequaliser and hence epi. Thus h◦T k = k ◦g and p is a morphism
of T -algebras. Therefore q is a coequaliser in C T , and this completes the proof.

In fact, one can extend Proposition 6.3 to the claim that U T preserves and reflects all limits whatsoever ([4]).
This is the abstract explanation as to why when one performs constructions such as taking products of alge-
braic structures, they do so on the underlying sets! Because U T reflects isomorphisms by Lemma 2.3, we also
obtain the familiar result that morphisms of algebraic structures that are bijective on the underlying sets are
isomorphisms.

Now somewhat reassured by the statement of Proposition 6.3, we consider a monadic functor U : D → C

defining a monad T . But in fact, because monadic functors provide an equivalence D ∼=C T , we have stumbled
into the following main result!

Theorem 6.4 (Precise Monadicity Theorem, first version). Let U : D →C be a functor. Then U is monadic if and
only if

• the category D has coequalisers of U -split pairs, and

• the functor U has a left adjoint, and preserves and reflects coequalisers of U -split pairs.

Proof. As already mentioned, sufficiency is provided by Proposition 6.2. Now let U : D → C be monadic. By
definition, the comparison X : D →C T is an equivalence of categories. Then, by the additional identity U T X =
U , the hypotheses of Proposition 6.2 are equivalent to the specific case of taking D =C T and U =U T . They are
therefore verified by Proposition 6.3, and this completes the proof.

It is striking that we have obtained a precise characterisation of monadic functors by primarily employing
wishful thinking, and then recognising and analysing the structures with which we have been presented.

There are several remarks which now deserve to be made. One is that by proving the theorem via absolute
coequalisers (instead of split ones), we actually possess a stronger half of the implication of Theorem 6.4; with U
monadic implying the conclusions with “split” replaced with “absolute” (incidentally, the latter condition is often
easier to check in practice). Furthermore, it was noted above when constructing a left adjoint to the comparison
functor X : D → C T , that coequalisers for only a special class of U -split pairs were actually required. In fact,
these pairs (which were of the form (εFC ,F f) for (C , f) ∈C T) were all reflexive, in that they possessed a common
section (i.e. right inverse) FηC . The hypotheses of Theorem 6.4 are thus frequently weakened to only demand
that D have reflexive U -split pairs. Also common is a further weakening by the application of the following
lemma (taking P below to be the reflexive U -split pairs).

Lemma 6.5. Let U : D →C be a functor which reflects all isomorphisms and preserves coequalisers of some set P
of parallel pairs in D. If D has coequalisers of elements of P, then U reflects coequalisers of elements of P.

Proof. Suppose that we have a fork D D ′ D ′′h,h′
k in P for which Uk is a coequaliser. Then

for q : D ′ → A a coequaliser in D, there is a unique morphism φ : A → D ′′ such that φ ◦ q = k. We thus have a

13

commuting diagram

U D D ′ D ′′

A

Uh

Uh′
Uk

U q
Uφ .

By the hypotheses of the lemma both Uk and U q are now equalisers, and so Uφ is an isomorphism. But U
reflects isomorphisms, and therefore φ : A → D ′′ is an isomorphism. This proves that k is a coequaliser, as
required.

The reverse direction of the monadicity equivalence is then provided by Lemma 2.3, establishing the follow-
ing.

Theorem 6.6 (Precise Monadicity Theorem, second version). Let U : D → C be a functor. Then U is monadic if
and only if

• the category D has coequalisers of reflexive U -split pairs, and

• the functor U has a left adjoint, reflects isomorphisms, and preserves coequalisers of reflexive U -split pairs.

Moreover, the theorem holds with “split” replaced by “absolute”, and/or “reflexive” deleted.

Finally, this result (in its various forms) is also known as Beck’s theorem, after Jonathan Mock Beck who proved
it in the course of writing his PhD dissertation in 1964 ([3]). His original version supposed that the category D

had all coequalisers and that a functor U : D → C preserved and reflected all of them, and then concluded that
U was monadic.

7 Implications and applications

We now resolve the question which originally prompted our investigation, and make several brief observations of
the applications and consequences of Theorem 6.6. First, observe that by excising the checks of the associativity
and identity axioms of the structure maps for T -algebras appearing in the proof of Proposition 6.3, we obtain
the following proposition and an immediate corollary.

Proposition 7.1. For T : C → C any endofunctor, the forgetful functor G : Alg(T) → C preserves and reflects
coequalisers of G-absolute (and hence G-split) pairs.

Theorem 7.2. Let T : C → C be an endofunctor, and G : Alg(T) → C the associated forgetful functor. If G has a

left adjoint F , then the category Alg(T) is equivalent to C T with T =GF the monad obtained from the adjunction
F aG.

Proof. By Proposition 7.1 G : Alg(T) →C satisfies the hypotheses of Theorem 6.6 and therefore is monadic. The

comparison X : Alg(T) →C T is therefore an equivalence of categories.

This (partially) resolves our long-outstanding question of which categories of algebras over endofunctors
can be upgraded into algebras over a monad, in that the theorem reduces the question to one of whether a
particular functor has a left adjoint. This is a much more general problem, and grants us access to the wide array
of available adjoint functor theorems. For example, if C is complete we can obtain the conclusion of Theorem 6.6
by the General Adjoint Functor Theorem.

The monad T defined above is called the algebraically-free monad generated by T , in analogy with classical
algebra. Specifically, the difference between an algebra over an endofunctor and an algebra over a monad is
analogous to the difference between the action of a set S×X → X , and the action of a monoid M×X → X on that
set (the former being equivalent to the latter with M the free monoid generated by S).

The primary applications of Beck’s theorem are roughly classified into a dichotomy; the first class consists
of the far reaching consequences of Beck’s theorem in modern algebraic geometry and sheaf theory. In partic-
ular, Beck’s theorem plays a central role in descent theory, where monadicity allows categories of descent data
to be identified with honest algebras over a particular monad ([8]). For example, the faithfully flat descent of
Grothendieck’s FGA and in SGA1 are specialisations of Beck’s theorem ([12]). Beck’s theorem has also found
applications in the study of Tannakian categories, where Deligne (in [6]) has used the theorem to simplify the
foundational development of the theory.

14

The other half of the dichotomy classifies results obtained in the regime of relatively elementary/familiar
categories and functors, but where nontrivial and potentially unexpected insights are obtained. For example,
once one fixes a model for the notion of an algebraic structure, the monadicity of every forgetful functor from
an algebraic structure to a weaker one (or even just Sets) follows easily (e.g. in [11, 1]). One simply verifies
that the model possesses the preservation and reflection of U -absolute coequaliser conditions as required by
Theorem 6.6, and in doing so “checks the necessary boxes”.

We will conclude by sketching the proof of a striking and self-contained result of this type, originally due to
Paré ([13]).

Theorem 7.3. (Paré 1971) The forgetful functor U : CptHaus → Sets from the category of compact Hausdorff
topological spaces to sets is algebraic(!) in the following sense: U is a monadic functor.

Proof sketch. We will verify the hypotheses of Theorem 6.6. First, we have a left adjoint F : Sets → CptHaus
of U by taking the Stone-Čech compactification of sets equipped with the discrete topology. Morphisms of
compact Hausdorff spaces which are bijective on the underlying sets are homeomorphisms, and so U reflects
isomorphisms. We show that CptHaus has coequalisers of U -absolute pairs by bootstrapping off the fact that
Top does. Indeed, for (h,h′) : X → X ′ in CptHaus a U -split pair, we get a coequaliser q : X ′ → Y (in Top). But
U : CptHaus → Sets is the restriction of the forgetful functor U : Top → Sets, and the latter preserves all colimits
of any kind by the fact that it has a right adjoint (equipping sets with the indiscrete topology).

Therefore it remains to show that Y is compact Hausdorff (technically we need that CptHaus is a full subcate-
gory of Top). Every epimorphism in Top is surjective, and so Y , being the image of a compact space, is compact.
A point-set topology argument then shows that we can separate pairs of points in Y with pairs of disjoint open
neighbourhoods of those points: we just lift a pair of points to closed sets to their preimage under q , take disjoint
open neighbourhoods in the compact Hausdorff space X ′, send their complements to closed sets back in Y , and
finally take complements again. This shows that Y is Hausdorff, and hence completes the proof.

A final thought; one might be curious as to the action of the monad defined by U : CptHaus → Sets, i.e. the
effect of the underling composition T =U F : Set→ Set on actual sets. The answer (of [10]) is that T sends X ∈ Set
to the set of ultrafilters on the power set of X (yes, really!), partially ordered by inclusion. We have stumbled upon
the ultrafilter monad, which might just persuade the reader that the notion of an ultrafilter is not so foreign after
all!

References

[1] Ji Adámek, Horst Herrlich, and George E Strecker. “Abstract and concrete categories. The joy of cats”
(2004).

[2] Steve Awodey, Nicola Gambino, and Kristina Sojakova. “Inductive types in homotopy type theory” (2012).
arXiv: arXiv:1201.3898 [math.LO].

[3] Jonathan Mock Beck. “Triples, algebras and cohomology”. PhD thesis. Columbia University, 1967.

[4] F Borceux. Handbook of Categorical Algebra: Volume 2, Categories and Structures. Vol. 51. Cambridge Uni-
versity Press, 1994.

[5] Francis Borceux, Stefaan Caenepeel, and George Janelidze. “Monadic approach to Galois descent and co-
homology”. 23.5 (2010), pp. 92–112. arXiv: arXiv:0812.1674 [math.CT].

[6] Pierre Deligne. “Catégories tannakiennes”. The Grothendieck Festschrift. Springer, 2007, pp. 111–195.

[7] Roger Godement. Topologie algébrique et théorie des faisceaux. Vol. 13. Hermann Paris, 1958.

[8] George Janelidze and Walter Tholen. “Facets of descent, I”. Applied Categorical Structures 2.3 (1994), pp. 245–
281. DOI: 10.1007/BF00878100.

[9] G Max Kelly. “A unified treatment of transfinite constructions for free algebras, free monoids, colimits,
associated sheaves, and so on”. Bulletin of the Australian Mathematical Society 22.1 (1980), pp. 1–83. DOI:
10.1017/S0004972700006353.

[10] Tom Leinster. “Codensity and the ultrafilter monad”. 28.13 (2013), pp. 332–370. arXiv: arXiv:1209.3606
[math.CT].

[11] Saunders Mac Lane. Categories for the working mathematician. Vol. 5. Springer Science & Business Media,
1998.

[12] Bachuki Mesablishvili. “Descent theory for schemes”. Applied Categorical Structures 12.5-6 (2004), pp. 485–
512. DOI: 10.1023/B:APCS.0000049314.33172.0d.

15

http://arxiv.org/abs/arXiv:1201.3898
http://arxiv.org/abs/arXiv:0812.1674
https://doi.org/10.1007/BF00878100
https://doi.org/10.1017/S0004972700006353
http://arxiv.org/abs/arXiv:1209.3606
http://arxiv.org/abs/arXiv:1209.3606
https://doi.org/10.1023/B:APCS.0000049314.33172.0d

[13] Robert Paré. “On absolute colimits”. Journal of Algebra 19.1 (1971), pp. 80–95. DOI: 10 . 1016 / 0021 -
8693(71)90116-5.

[14] Bodo Pareigis. Categories and functors. Vol. 39. Academic Press, 1970.

[15] Ross Street. “The Formal Theory of Monads”. Journal of Pure and Applied Algebra 2 (1972), pp. 149–168.
DOI: 10.1016/0022-4049(72)90019-9.

[16] Qiaochu Yuan. Monads are idempotents. 2015. URL: https://qchu.wordpress.com/2015/12/15/
monads-are-idempotents/ (visited on 06/15/2018).

16

https://doi.org/10.1016/0021-8693(71)90116-5
https://doi.org/10.1016/0021-8693(71)90116-5
https://doi.org/10.1016/0022-4049(72)90019-9
https://qchu.wordpress.com/2015/12/15/monads-are-idempotents/
https://qchu.wordpress.com/2015/12/15/monads-are-idempotents/

	Algebras over endofunctors
	Algebras over monads
	Comparison and monadicity
	Assorted cutlery: our new best friends (or, Forks)
	On the unreasonable effectiveness of coequalisers
	Beck's monadicity theorem
	Implications and applications

