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In this essay we introduce Rosenberg’s reconstruction theorem, which asserts
that two suitably nice schemes X and Y are isomorphic if and only if their associ-
ated categories of quasicoherent sheaves QCoh(X ) and QCoh(Y ) are equivalent. We
also explain a strengthening of this result which fully classifies the structure of an ar-
bitrary equivalence F : QCoh(X ) ' QCoh(Y ), namely that any such functor factors as
the pullback by an isomorphism f : Y → X followed by tensoring with a line bundle
over Y .

We describe the structure of a proof of this result due to Brandenburg and Gab-
ber [2] which was born out of an attempt to understand Rosenberg’s original proof
[19], before introducing a corresponding functor-of-points formulation. We then ex-
plain how results from the literature—principally of Brandenburg–Chirvasitu [3] and
Nyman [16]—combine to give a proof of the functorial formulation, and we spell out
the main ideas of the proofs of their original results. We do not aim to give a self con-
tained exposition, instead attempting to outline the structures of proofs by analogy
with the straightforward case where X and Y are both affine schemes. Indeed, in the
affine case the Eilenberg–Watts theorem from commutative algebra can be applied
directly to perform the heavy lifting, and we will see that one way to interpret Rosen-
berg’s reconstruction theorem is as a consequence of a substantial generalisation of
the Eilenberg–Watts theorem.

We conclude by explaining how Rosenberg’s reconstruction theorem—in all of
its variegated incarnations—provides an entry-point into the subject of noncommu-
tative algebraic geometry. By the end we will also see that one partial strengthening
of Rosenberg’s theorem by Brandenburg–Chirvasitu [3] implies that 1-algebraic ge-
ometry can be interpreted as being “2-affine” in a suitable higher categorical sense.

1 Rosenberg’s original proof

The reconstruction theorem was first proved by Gabriel [9] in the case of Noetherian
schemes. In [19] Rosenberg lifted this restriction1 and required that the schemes in
question merely be quasiseparated. A modern and essentially self-contained proof
by Brandenburg using the ideas of Gabber appears in [2], and we now take a moment
to quickly describe the basic constructions. We make no attempt to be complete, but
themes such as reduction to the affine case will recur in later sections.

Fix rings R and S. We write ModR for the category of left R-modules, and ModR S
for the category of (R,S)-bimodules. When we want to emphasise that M is an (R,S)-
bimodule we sometimes write MR S , and when we want to emphasise the restriction

1The proof is long and complex, and appears as the final Proposition 10.7.1 of [19].
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to only the left R-module structure we write MR (and analogously on the right). If M
is a left R-module and (r,m) ∈ R×M , then for emphasis we write r .m for the action
of r on m. If C is any category and X ,Y ∈C are objects then we write HomC (X → Y )
for the collection of morphisms from X to Y in C . We use [C → D] to denote the
category of functors from C to D, and later if we put conditions or structure on
these functors we notate this over the arrow. All of our abelian categories will be
cocomplete, and have exact directed colimits. Functors between abelian categories
will be assumed additive. We also use Spec to denote the hom-functor from the
category CAlg of rings to sets defined by SpecR(S) := HomCAlg(R → S). Finally, we
use Sch to denote the category of schemes and their morphisms, and QCoh(X ) for
the category of quasicoherent sheaves over a scheme X . In this section a scheme is
a locally ringed space.

Definition 1.1. An object A of an abelian category A is2 spectral if A is not zero and
if A′ ,→ A is any nonzero subobject then A is a subquotient of a (perhaps infinite)
direct sum of copies of A′.

The spectrum Spec(A ) of A is the quotient of the set of spectral objects of A

by the equivalence relation that A ' A′ exactly when A and A′ are each respectively
subquotients of a (possibly infinite) direct sum of copies of the other.

Remark 1.2. In later sections we will give and elect to work with another definition
of the spectrum of a (suitably endowed) category, which is more categorical in na-
ture. Nonetheless, when both notions of spectrum make sense it will follow from
our results that they both agree.

The proof of the reconstruction theorem in [2] (which we follow here closely)
now proceeds by showing that the spectrum of QCoh(X ) for X a scheme is naturally
a topological space, and in fact a scheme, and then that there is a natural isomor-
phism X → Spec(QCoh(X )) of sets, then of topological spaces, and finally of locally
ringed spaces. Of course, Rosenberg’s reconstruction theorem then follows imme-
diately.

As a basic sanity-check we note the following lemma.

Lemma 1.3. Let R be any ring. Then the spectrum Spec(QCoh(SpecR)) ' Spec( ModR )
is in canonical bijection with the prime ideals of R.

Proof. This follows from Proposition 2.6 of [2], and is just commutative algebra.
Note that by the definition of the spectrum any class [M ] ∈ Spec( ModR ) is repre-
sented by the class of the submodule of M generated by some nonzero m ∈ M , so
even [M ] = [R/AnnR m] with R/AnnR m 6= 0, and the only difficulty is showing that
the ideal AnnR m of R is prime.

Results of this kind are typical in [2], where a particular step is often established
for affine schemes before being used to bootstrap the extension to the general case.
For example, in the affine case a natural map from the prime ideals p of a ring R to
the set Spec(QCoh(R)) ' ModR arises by mapping a prime ideal p of R to the class
[R/p] (inspired by the previous lemma). Given a general scheme X and a point x ∈ X ,
if Ix ⊂OX is a quasicoherent ideal canonically corresponding to x then we have the
analogous mapping

x 7→ [O/Ix ]. (1)

2Brandenburg explains in [2] that this definition contains an important modification of Rosenberg’s
original definition due to Ofer Gabber.
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Now, for any inclusion of a full subcategory of an abelian category B ⊆A , we can
canonically build the subset SpecA (B) := {[M ] ∈ Spec(A ) : M ∈ B} of Spec(A ). In
fact, the set Spec(A ) is naturally made into a topological space by declaring that the
closed sets are SpecA (B) for B ⊆A any so-called reflexive topologizing subcategory
[2]. The required conditions on B are merely first that B is closed under taking
subquotients and direct sums (topologizing), and second that the inclusion of B

into A is a right-adjoint (reflective).
In analogy with Lemma 1.3, again in the affine case we have the following con-

crete module-theoretic description of the induced topology.

Lemma 1.4 (Proposition 3.4 of [2]). The topologizing reflexive subcategories of ModR
are in natural correspondence with the ideals of R, where an ideal I ⊂ R corresponds
to the full subcategory of ModR consisting of the modules annihilated by I .

The proof now proceeds by showing that (1) is a continuous map with respect
to this topology. After this, we show that when X is quasiseparated the global sec-
tions Γ(OX ) of its structure sheaf are recovered as the ring of endomorphisms of the
identity functor QCoh(X ) → QCoh(X ). Local sections of U ,→ X are recovered as
the endomorphisms of the identity functor on a quotient of QCoh(X ) by the so-
called thick subcategory of QCoh(X ) of quasicoherent sheaves which vanish over
U [2, 9]. Going via the endomorphism construction one finally obtains an isomor-
phism X → Spec(QCoh(X )) of locally ringed spaces, as desired.

Thus we arrive at the following generalized theorem of Rosenberg [19].

Theorem 1.5 (Rosenberg’s reconstruction theorem). Every quasiseparated scheme X
is isomorphic as a locally ringed space to the spectrum Spec(QCoh(X )). Equivalences
QCoh(X ) ' QCoh(Y ) induce isomorphisms Spec(QCoh(X )) ∼= Spec(QCoh(Y )) and
therefore also X ∼= Y .

In [2] Brandenburg actually classifies all equivalences QCoh(X ) ' QCoh(Y ) and
obtains the next theorem (note that line bundles, i.e. locally free sheaves of rank 1,
are equivalently invertible sheaves). In Section 4 we will prove this extended version
of Theorem 1.5 in the affine case, and then (under suitably general hypotheses) we
will recover a version for schemes in Section 6.

Theorem 1.6 (Rosenberg’s reconstruction theorem, extended version3). The collec-
tion of equivalences QCoh(X ) ' QCoh(Y ) for X and Y quasiseparated schemes is it-
self equivalent as a category to the (discrete) category of pairs{

( f : Y → X ,L ∈ QCoh(Y )) | f an isomorphism and L a line bundle
}

.

A pair ( f ,L ) maps to the equivalence − 7→ f ∗(−)⊗L under this correspondence.

2 The functor of points perspective

Henceforth our schemes will represented by their functors of points. In contrast to
the previous section it is now our objective to formulate a version of the spectrum
which fits in naturally with functors of points. The first step will be to define a “cat-
egorical” spectrum, which we do below.

3This is Theorem 5.4 of [2].
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Now, if C is any category let K0(C ) denote the set of isomorphism classes of the
objects of C . Let Cat denote the 2-category of categories and likewise let AbCat⊗
denote the 2-category of monoidal abelian categories (with monoidal and abelian
structures which we always assume are compatible). Our monoidal categories will
always be symmetric monoidal, and our monoidal functors will be strong (i.e. not
merely lax) unless explicitly specified. Moreover if F : C → D is a monoidal functor
between monoidal categories we denote its identity isomorphism (identitor) by ι :
1D → F (1C ) and its multiplication isomorphism (tensorator) by JC ,D : F (C )⊗F (D) →
F (C ⊗D).

Definition 2.1. Let A be a cocomplete4 abelian monoidal category. The categorical
spectrum of A is the 2-functor Sch → Cat defined for each Y ∈ Sch by the assignment

Spec(A )(Y ) := {
cocontinuous monoidal functors A → QCoh(Y ) and their morphisms

}
.

In particular the morphisms of Spec(A )(Y ) are the monoidal natural transforma-
tions. For our purposes we will often want to restrict to the truncated spectrum 1-
functor

Spec(A )(Y ) := K0(Spec(A )(QCoh(Y ))),

which simply reports a set for each Y ∈ Sch.
Finally, we often implicitly think of a ring R ∈ CAlg as its spectrum SpecR, and

thus by convention Spec(A )(R) makes sense for any cocomplete abelian monoidal
category A and ring R.

In this language, a proof of Rosenberg’s reconstruction theorem naturally fits
into five steps:

Step 1. Show that for suitably nice (quasicompact quasiseparated) schemes X ,
there is a natural isomorphism in R ∈ CAlg:

X (R) ∼= Spec(QCoh(X ))(R).

This will follow as a consequence of Theorem 5.1, which is Brandenburg–
Chirvasitu’s main result of [3].

Step 2. It follows immediately that if QCoh(X ) and QCoh(Y ) are monoidally
equivalent (and both X and Y are “nice enough”) then

Spec(QCoh(X )) ∼= Spec(QCoh(Y ))

and therefore X ∼= Y . In fact, the full generality of Theorem 5.1 allows us
to lift the niceness hypothesis on one of X or Y .

Step 3. Given an arbitrary (not necessarily monoidal) equivalence F : QCoh(X ) →
QCoh(Y ), show that L := F (OX ) is an invertible object of QCoh(Y ).
Consequently post-composition of F with the autoequivalence of G :
QCoh(Y ) → QCoh(Y ) which tensors with an inverse of L gives a func-
tor G ◦F which preserves the tensor unit.

4This hypothesis is not necessary for the definition of the categorical spectrum to make sense, but it is
necessary for Spec to enjoy the property of being a stack (i.e. for Theorem 5.14 to hold below).
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Step 4. Show that any equivalence F : QCoh(X ) → QCoh(Y ) equipped with the
data of an isomorphism ι : F (OX ) →OY is canonically a monoidal func-
tor.

Step 5. Conclude that by Step 2 the composite G ◦F is the pullback by an iso-
morphism f : Y → X , and therefore there is a natural isomorphism

F (−) ∼= f ∗(−)⊗L ,

thus fully classifying the equivalences QCoh(X ) ' QCoh(Y ) when X is
nice.

We embark on our journey with the humble first objective in Section 4 of ex-
ecuting this entire strategy in the case when X = Spec A and Y = SpecB are both
affine (the key result will be Theorem 4.2). We then in Section 5 give an exposition
of Brandenburg–Chirvasitu’s original proof [3] that cocontinuous monoidal functors
F : QCoh(X ) → QCoh(Y ) between quasiseparated schemes are given by the pullback
by a morphism f : Y → X . In doing this we focus on bootstrapping from the affine
case into the case where only Y is assumed affine, and then again to the general
case. This will conclude Steps 1 and 2, whence Steps 3, 4, and 5 will follow in Sec-
tion 6 from general categorical machinery which quite closely mirrors the module
case.

3 Module category ingredients

We will need some module-theoretic preliminaries, which we now dispatch with.

Definition 3.1. For R,S ∈ CAlg and B ∈ ModS R an (S,R)-bimodule, let TB be the
(cocontinuous) functor ModR → ModS defined by

TB : MR 7→ BS ⊗R M ,

i.e. tensoring with B on the left.

Key to handling the affine case is the following famous theorem in commutative
algebra.

Theorem 3.2 (Eilenberg–Watts theorem, [11, 8, 23]). Fix R,S ∈ CAlg, and let F :
ModR → ModS be a functor. If F is right exact and preserves small coproducts then

there is a natural isomorphism F ∼= TB for some B ∈ ModS R .

Proof idea. The (S,R)-bimodule underlying F is B := F (R)—such B is automatically
a left S-module, and so we must provide the right R-module structure. This is equiv-
alently the data of a morphism R → End ModS

(F (R) → F (R)), which is provided by
pre-composing the action of the functor F with the (famous) canonical isomor-
phism R ∼= End ModR

(R → R).

Remark 3.3. The category ModR is cocomplete and locally small. Because in addi-
tion right exact functors F : ModR → ModS which preserve small coproducts satisfy
a certain technical condition, the General Adjoint Functor Theorem yields that The-
orem 3.2 applies to F exactly when F is cocontinuous [11]. We will often require
hypotheses of cocontinuity on functors in the sequel.

5



Proposition 3.4. Ring morphisms f : R → S are in canonical correspondence with
(S,R)-bimodule structures on S which extend its natural left S-module structure.

Proof. Starting with a ring morphism f : R → S then the left S-module given by S
itself acquires a right R-module structure simply by the action

s/ r := s · f (r )

using the multiplication in S. By associativity of S’s multiplication this is actually an
(S,R)-bimodule action, as desired.

Conversely, let SS R be an (S,R)-bimodule structure extending the natural left S-
module structure on S. The data of the right R-module structure is carried by a
map −/− : S ×R → S, which by currying is the same as a ring map R → EndSet(S).
Actually the bimodule associativity condition allows us to restrict the codomain to
obtain a map R → End ModS

(S) (i.e. into the left S-module endomorphisms of S). But
End ModS

(S) ∼= S canonically, so we obtain the desired ring map f : R → S.
It is clear that these constructions are mutually inverse, so this completes the

proof.

Proposition 3.5. Let B ∈ ModS R be an (S,R)-bimodule. Isomorphisms ι : TB (R) → S
canonically determine (strong) monoidal structures on TB , and vice versa.

Proof. Obviously any monoidal structure on TB : ModR → ModS determines such
an isomorphism ι by simply forgetting the tensorator.

On the other hand if ι : TB (R) → S is any isomorphism then

BS
∼= BS ⊗R R = TB (R) ∼= SS

as (left) S-modules. By transport of structure S then inherits the structure of an
(S,R)-bimodule which extends its canonical left S-module structure, and there is
a natural isomorphism of functors TB

∼= T SS R
. Since every left R-module is pre-

sentable as a direct sum of copies of the tensor unit R, observe that we can compute
F (M ⊗N ) for F : ModR → ModS any cocontinuous monoidal functor by distributing
F over a presentation of M and N and then using the composite of isomorphisms

F (R⊗R) → F (R)
ι−→ S to obtain a presentation in ModS .5 This implies that the natural

isomorphism TB
∼= T SS R

is actually monoidal.
We can now assume that B is just such a bimodule SS R (and we will drop the sub-

scripts on S for now on). We claim that TS has a canonical tensorator J : TS ( MR )⊗S

TS ( NR ) → TS (M ⊗R N ) compatible with the ambient identitor provided. Indeed, J is
given by

( SS ⊗R M)⊗S ( SS ⊗R N ) → SS ⊗R (M ⊗R N ),

(s ⊗m)⊗ (s′⊗n) 7→ ss′⊗ (m ⊗n),

which is certainly an isomorphism. The associativity constraint and identity con-
straints for J follow from the same property of the tensor product of modules them-
selves.

Corollary 3.5.1. Using the notation of the previous proposition, strong monoidal
functor structures (TB , ι, J ) canonically correspond to pairs ( f , g ) with f : R → S a ring
morphism and g : BS → SS an isomorphism of left S-modules.

5See comments by Eric Wofsey at https://math.stackexchange.com/questions/3936887/
special-case-of-the-eilenberg-watts-theorem-for-the-base-ring.
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Proof. As in Proposition 3.5 we obtain the isomorphism g : BS → SS from ι, and then
by Proposition 3.4 the induced bimodule structure on S corresponds uniquely to a
ring morphism f : R → S, as desired. On the other hand a ring morphism f : R → S
equips S with a right R-module structure extending its left S-module structure, and
then an isomorphism BS → SS permits transport of this right R-module structure to
B . We then obtain a strong monoidal functor structure on TB as above.

Proposition 3.6. Let B ,B ′ ∈ ModS R be bimodules and let (TB , ι, J ) and (TB ′ , ι′, J ′) be
strong monoidal functors. Then TB and TB ′ are monoidally naturally isomorphic6

if and only if they have equal corresponding ring morphisms R → S obtained from
Corollary 3.5.1.

Proof. We can build a bimodule isomorphism B ∼= B ′ from the knowledge that TB

and TB ′ correspond to the same morphisms by simply tracing through the construc-
tions which we performed above, since then in particular the hypotheses imply that
B and B ′ are isomorphic to the same bimodule SS R .

By the Theorem 3.2 (the Eilenberg–Watts theorem) we can equivalently state
Proposition 3.6 as an equivalence between the (discrete category) HomCAlg(R → S) ∼=
HomSch(SpecS → SpecR) and the category of monoidal functors [QCoh(SpecR)

⊗−→
QCoh(SpecS)]. This foreshadows the situation to come.

4 Rosenberg’s theorem: affine case

We are now ready to prove Rosenberg’s reconstruction theorem for affine schemes.

Lemma 4.1. Let R be a ring. Every invertible left R-module M canonically induces
an autoequivalence of the category ModR .

Proof. For each R-module M whatever there is a cocontinuous functor VM : ModR →
ModR arising from the tensor product simply via

NR 7→ M ⊗R N .

If N is any other R-module then observe that the composite VN ◦VM is naturally
isomorphic to VN⊗R M . Moreover each morphism φ : M → N of R-modules induces
a natural transformation ηφ : VM →VN .

In particular, if N is an inverse of M then the witnessing isomorphism φ : N ⊗R

M → R gives rise to a chain of natural isomorphisms

VN ◦VM
∼=VN⊗R M

∼=VR
∼= id ModR

,

with the last isomorphism coming from the left unitor of ModR . The symmetric
braiding of ModR gives a natural isomorphism VN ◦VM

∼= VM ◦VN , and so we also
have VM ◦VN

∼= id ModR
. Therefore VM is part of an autoequivalence (as witnessed by

VN ), as desired.

6Actually, the hypothesis of monoidal natural isomorphism can be weakened to requiring the mere
existence of a monoidal natural transformation TB → TB ′ (see Proposition 3.1.1 of [2]), but we will not
require this for our purposes.
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Theorem 4.2 (Rosenberg’s reconstruction theorem, affine version). Fix rings R and
S. There is a canonical bijection between the sets{

( f : R → S, [L] ∈ K0( ModS )) | f is an isomorphism and L is invertible
}

and
Spec( ModR )(S) ∼=

{
F : ModR → ModS | F is an equivalence

}
/ ∼

where the relation ∼ is the quotient by natural isomorphism.
Moreover, pairs ( f : R → S, [L] ∈ K0( ModS )) with f an isomorphism and L isomor-

phic as an S-module to S itself correspond under this bijection to those equivalences
which possess monoidal structures.

Proof. Observe that equivalences of categories are certainly cocontinuous, so by the
Eilenberg–Watts theorem an equivalence F : ModR → ModS is, up to natural isomor-
phism, given by TB for an (S,R)-bimodule B . But a pseudoinverse G : ModS → ModR
to F is also automatically cocontinuous, so therefore is also given up to isomorphism
by TA for an (R,S)-bimodule A. Since the composites FG and GF must be naturally
isomorphic to the identity, the explicit descriptions of these functors provided by
the Eilenberg–Watts theorem yields isomorphisms of modules

AR ⊗S ( BS ⊗R R) ∼= AR ⊗S B ∼= RR and BS ⊗R A ∼= BS ⊗R ( AR ⊗S S) ∼= SS . (2)

Concentrating on the former isomorphism, we find that the S-module AS witnesses
the fact that BS R is invertible as a left S-module.

Next, we want to precompose with the autoequivalence TC of ModS which ten-
sors with C := SS ⊗R AS (as verified in Lemma 4.1), thereby establishing that the com-
posite TC ◦TB sends R to an object of ModS isomorphic to S. Therefore our previous
result Corollary 3.5.1 engages to yield that the entire composite TC ◦TB corresponds
to the data of a single ring morphism f : R → S. Repeating this process with the sec-
ond isomorphism of (2), we obtain a morphism g : S → R, which by functoriality7 of
our constructions is mutually inverse to f on both sides (just because F and G are
themselves mutually inverse up to natural isomorphism).

Thus we obtain the data of a pair ( f , BS ) with f an isomorphism and B invert-
ible as a left S-module. It remains to verify that f and the isomorphism class of B
is respected by a natural isomorphism of functors F ∼= F ′. But such a natural trans-
formation provides an isomorphism F (R) ∼= F ′(R) showing that B is respected, and
f is respected by monoidal natural isomorphism by Proposition 3.6 (and this is suf-
ficient by Footnote 7).

Conversely, given a pair ( f ∈ R → S, [L] ∈ K0( ModS )), let TL be the autoequiv-
alence of ModS induced by tensoring with L. Equip S with the canonical (S,R)-
bimodule structure provided by f . Then simply set F := TL ◦ TB (clearly the iso-
morphism class of F is unchanged by varying L in its isomorphism class).

Finally, let F : ModR → ModS be the equivalence associated to a pair ( f , [L]) (with
the former technically determined only up to natural isomorphism). Further sup-
pose that [L] = [S] with S given the canonical left S-module structure. In this situ-
ation an isomorphism φ : L → S gives rise to an isomorphism F (R) ∼= S, which by
Proposition 3.5 determines a monoidal structure on F . Conversely if an isomor-
phism F (R) → S exists then F (R) ∼= L so [L] = [S]. This completes the proof.

7Technically to appeal to functoriality we need to upgrade these natural isomorphisms (suitably
whiskered) to monoidal natural isomorphisms. But, just as how in this case tensorators of monoidal
functors are induced by identitors, it is enough to check that our natural transformations respect the
identitors. This is true by construction.
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Remark 4.3. It is easy to see from the proof of Theorem 4.2 that the role of the quo-
tients by isomorphism is simply to clarify its statement. Indeed, consider the collec-
tion of quadruplets

( f : R ∼= S,L ∈ ModS ,L′ ∈ ModS ,φ : L⊗S L′ ∼= SS ) (3)

in particular with φ witnessing a specific isomorphism between S and L tensored
with a specific choice of inverse module L′.

We can also consider quadruplets of the form

(F : ModR → ModS ,G : ModS → ModR ,α : GF ∼= id ModR
,β : FG ∼= id ModS

), (4)

where α and β are natural isomorphisms of functors (i.e. the full data of an equiva-
lence of categories). We can impose an equivalence relation on this latter data by
declaring (F,G ,α,β) ∼ (F ′,G ′,α′,β′) exactly when there are natural isomorphisms
(γ : F → F ′,δ : G →G ′) compatible with the pairs (α,β) and (α′,β′).

By following through the proof of Theorem 4.2, in this language it is asserted that
there is a one-to-one bijection between quadruplets of the form (3) and equivalence
classes of quadruplets of the form (4) under the equivalence relation just described.

It is clear that our Theorem 4.2 is the affine analogue of Theorem 1.6. Similarly,
we note the next corollary which follows immediately from Theorem 4.2, and proves
the affine version of Theorem 1.5.

Corollary 4.3.1. Let R and S be rings. There is a canonical bijection between

Spec(R)(S) =
{

ring morphisms R → S
}

and Spec( ModR )(S)

which extends to an isomorphism of categories.

5 The structure of the spectrum of QCoh(X )

The goal of this section is to give an outline and explain the structure of the proof of
Theorem 5.1 below. In particular, note that as a special case by the Yoneda lemma it
follows immediately from this theorem that there is an isomorphism of functors

X (R) ∼= Spec(QCoh(X ))(R)

natural in quasicompact quasiseparated schemes X and rings R.

Theorem 5.1 (Brandenburg–Chirvasitu, [2]). Let X and Y be schemes with X quasi-
compact quasiseparated. Then taking the pullback defines a natural isomorphism

HomSch(Y → X ) ∼= Spec(QCoh(X ))(Y ) = [QCoh(X )
⊗, cocts.−−−−−→ QCoh(Y )]/ ∼ .

Thus we begin by recalling the pullback construction.

Proposition 5.2. Categories of quasicoherent sheaves over schemes are cocomplete
and monoidal. Moreover, there is a functor (viewing HomSch(Y → X ) as a discrete
category)

(−)∗ : HomSch(Y → X ) → [QCoh(X )
⊗, cocts.−−−−−→ QCoh(Y )]

called the pullback, which in particular factors through the cocontinuous monoidal
functors.
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Our key result Theorem 5.1 was first established by Brandenburg–Chirvasitu in
[3], in some sense generalising8 a result of Lurie [14] who proved an analogous state-
ment with a certain condition called tameness imposed on the monoidal functors
involved. Below we closely follow Brandenburg–Chirvasitu’s original argument, del-
egating technical results to their original paper.

The proof of the is accomplished in three stages. First, the claim follows when
X = Spec A for general categorical reasons. Next we handle the case when X is arbi-
trary quasicompact quasiseparated and Y is the spectrum of a local ring. Finally, we
bootstrap to the case of general schemes Y .

We begin with some category-theoretic preliminaries. Recall that for an abelian
category A the Yoneda embedding defines a map into the functor category [A op →
AbGrp] (implicitly consisting of only the additive functors). The object [A op →
AbGrp] is known as the free cocompletion of A ; one way to justify this is that it enjoys
the following 2-universal property.

Theorem 5.3. Every additive functor F : A →B into a cocomplete additive category
B factors through the Yoneda embedding Y : A → [A op → AbGrp] up to unique nat-
ural isomorphism to yield a cocontinuous additive functor F̃ : [A op → AbGrp] → B

called the Yoneda extension.
In other words, for each cocomplete B there is a canonical equivalence of functor

categories

[A
cocts.−−−→B] '

[
[A op → AbGrp]

cocts.−−−→B
]

.

Proof. This is Proposition 2.2.4 of [7].

Corollary 5.3.1. If A and B are additive monoidal categories and B is cocomplete
then the category [A op → AbGrp] has a canonical monoidal structure9, and there is a
canonical equivalence of functor categories

[A
⊗, cocts.−−−−−→B] '

[
[A op → AbGrp]

⊗, cocts.−−−−−→B
]

.

Proposition 5.4. Let R be a ring and let R be the full subcategory of ModR containing
just R.10 The category ModR is the free cocompletion of R.

Proof. We need to check that ModR ' [Rop → AbGrp], but a functor Rop → AbGrp
just equips an abelian group M ∈ AbGrp with an R-action.

Proposition 5.4 has the following immediate consequence.

Proposition 5.5. Let R be a ring and let B be an additive monoidal category. Then
there is a natural functor

[ ModR
⊗, cocts.−−−−−→B] → HomCAlg(R → End(1B)) (5)

which restricts to R ∈ ModR . When B is cocomplete this functor is part of an equiva-
lence.

8Theorem 5.1 is not a generalisation of Lurie’s result in a strict sense—Lurie in [14] proved a recon-
struction theorem for categories of quasicoherent sheaves over arbitrary geometric stacks, showing that
the so-called tame cocontinuous monoidal functors QCoh(X ) → QCoh(Y ) recovered the collection of
morphisms Y → X . Brandenburg–Chirvasitu [3] lifted the tameness requirement in the case of schemes
by imposing quasicompactness and quasiseparatedness conditions.

9This product is given by the so-called Day convolution, see [12, 6, 3].
10Since the only left R-module endomorphisms of R are left-multiplication by elements of R, we see

that HomR(R → R) ∼= R. Thus R is just an encoding of R as a degenerate additive 1-category.
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Proof. By Corollary 5.3.1 there is an equivalence

[R
⊗, cocts.−−−−−→B] ' [ ModR

⊗, cocts.−−−−−→B].

The former object is canonically isomorphic to HomCAlg(R → End(1B)), and tracing
through the composite of these equivalences we find that the natural map (5) gives
the functor in one direction.

Proposition 5.6. Theorem 5.1 holds in the special case of X = SpecR.

Proof. For any scheme Y , its morphisms into an affine scheme X = Spec A are pa-
rameterised by ordinary ring morphisms A → Γ(OY ) (this is Proposition 1.6.3 of
[10]). But Γ(OY ) = HomQCoh(Y )(OY → OY ) is exactly the set of endomorphisms of
OY in QCoh(Y ), so because QCoh(Y ) is cocomplete Proposition 5.5 yields that there
is an equivalence of categories

[ ModR
⊗, cocts.−−−−−→ QCoh(Y )] ' HomSch(Y → SpecR).

Taking the quotient by isomorphisms we recover the statement of Theorem 5.1,
as desired. (Observe that by tracing through the composites from right-to-left the
equivalence is actually given by taking pullbacks.)

With the fundamental base-case now established, from now on let X now be an
arbitrary quasicompact quasiseparated scheme.

Definition 5.7. Let F : QCoh(X ) → QCoh(Y ) be a monoidal functor, and let j : U ,→
X be a quasicompact open immersion. We say that F is U -local if for every F ∈
QCoh(X ) the image F (F ) → F ( j∗ j∗F ) of the canonical map11 F → j∗ j∗F is an
isomorphism.

The use of the terminology “U -local” to describe this property of a functor F :
QCoh(X ) → QCoh(Y ) is justified since existence of a natural isomorphism F (F ) →
F ( j∗ j∗F ) implies that the action of F on some F ∈ QCoh(X ) is completely deter-
mined by the restriction of F to the subscheme U of X .

Remark 5.8. Observe that in the situation above the morphism j∗ j∗F → F (actu-
ally, the counit of the ambient adjunction) is always an isomorphism. Moreover, [3]
formulates U -locality as a special case of i -locality, where (i∗, i∗,η,ε) is an adjunc-
tion with the counit ε an isomorphism. If i∗ is a functor C → D, then a functor F
from C into another category E is i -local if the image of the unit η under F is also an
isomorphism. Of course (i∗, i∗) := ( j∗, j∗) with j : U ,→ X as above is an example.

Our previous results now allow us to establish the key tool used to reconstruct a

morphism Y → X from functors QCoh(X )
⊗, cocts.−−−−−→ QCoh(Y ), which reveals the pur-

pose of the notion of U -locality.

Proposition 5.9. Any cocontinuous monoidal functor F : QCoh(X ) → QCoh(Y ) which
is (Spec A)-local arises as the pullback via a morphism Y → X .

Proof. The point is that we can form the composite

QCoh(Spec A)
j∗

,−−→ QCoh(X )
F−−→ QCoh(Y ).

11This is the unit of the adjunction j∗ : QCoh(X )�QCoh(U ) : j∗.
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This is very close to the situation of Proposition 5.6, except for the fact that while j∗
and j∗ are adjoint and j∗ is strong monoidal, as a result j∗ is merely a lax monoidal
functor. Fortunately, we are saved in this case by the fact that for formal category-
theoretic reasons whenever F is strong monoidal and also U -local, actually F ◦ j∗ is
strong monoidal too (this is Proposition 2.3.6 of [3]).

We conclude that F ◦ j∗ is induced by a morphism f : Y → Spec A, and post-
composition with Spec A ,→ X yields the desired map Y → X .

The next step is to handle the case where Y = SpecR is affine, and at first in
particular when R is a local ring. The utility of this assumption is established by the
following pair of lemmas.

Lemma 5.10 (U -locality critereon for local rings). To determine that a cocontinu-
ous monoidal functor F : QCoh(X ) → QCoh(SpecR) ' ModR is U -local for U ,→ X a
quasicompact open immersion, it is sufficient to verify the following property:

For every closed subscheme Z ,→ X for which Z ×X U =;, the functor
F maps the inclusion I ,→OX of the quasicoherent ideal associated to
Z to an isomorphism.

Proof. Brandenburg [3] calls the latter property weak U -locality of F . The proof is
a technical result which we omit, but note that F maps into an honest category of
R-modules, so the argument may largely take place there—an argument of a similar
flavour appears in the proof of the next lemma.

Lemma 5.11. Any cocontinuous monoidal functor F : QCoh(X ) → QCoh(SpecR) '
ModR into the category of modules over a local ring R is U -local for U some affine

subscheme of X .12

Proof. Since X is a quasicompact scheme it admits a finite open cover U = {Ui =
Spec Ai ,→ X }1≤i≤n by affine schemes. For a contradiction assume that X is not Ui -
local for any 1 ≤ i ≤ n. Now, each Ui is the complement of a closed subscheme Zi

of X with corresponding quasicoherent ideal Ii of OX . By the previous Lemma 5.10
we conclude that each image F (Ii ) ,→ F (OX ) is not an isomorphism for any i . We
claim that if the inclusion Ii ,→OX does not map to an isomorphism under F , then
F does not even map it to a surjection. Assuming this for a moment, it follows that
each F (Ii ) factors through the inclusion of the maximal ideal m ,→ Ai . Therefore
the image of the ideal sum F (

∑
i Ii ) also factors through m, but since the Ui cover

X this ideal sum must be all of OX . We conclude that F maps OX into the maximal
ideal of A, contradicting the fact that F is a monoidal functor. The claim follows.

It remains to prove the subclaim above. For this it sufficient to show that if
F (I ) ,→ F (OX ) is a surjection then it is injective as well. This is a good example
of reduction to a purely algebraic fact in the category of modules. Now, because
F is a monoidal functor the multiplication in I yields a multiplication morphism
F (I )⊗F (I ) → F (I ), turning F (I ) into a nonunital R-algebra equipped with a sur-
jective nonunital R-algebra morphism t : F (I ) → R.

Since t is surjective we can find a preimage u ∈ F (I ) of the unit of R (i.e. satis-
fying t (u) = 1). Now suppose that t (i ) = 0 for some i ∈ F (I ). But the multiplication
map I ⊗I → I in QCoh(X ) factors through the unitor OX ⊗I → I , so the same
happens in ModR and this implies that that

i = i /1 = i / t (u) = i ·u = t (i ).u = 0.

12Our proof follows Lemmas 3.3.2 and 3.3.3 of [3].
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We conclude that t is injective, as desired, and so this completes the proof.

Thus we immediately obtain the following.

Proposition 5.12. Theorem 5.1 holds in the special case of X quasicompact quasisep-
arated and Y = SpecR for R a local ring.

Proof. By Lemma 5.11 any cocontinuous monoidal functor F : QCoh(X ) → QCoh(Y )
is (Spec A)-local for some open immersion Spec A ,→ X , and so is in turn naturally
isomorphic to a pullback f ∗ by some f : Y → X by Proposition 5.9. Conversely the
pullback by any morphism Y → X is a cocontinuous monoidal functor.

By bootstrapping from the local-ring case we also obtain the following.

Proposition 5.13. Theorem 5.1 holds in the special case of X quasicompact quasisep-
arated and Y any affine scheme.

Proof sketch. Let F : QCoh(X ) → QCoh(SpecR) be a cocomplete monoidal functor.
We at least describe the construction for field points x : SpecK → SpecR, leaving the
rest to the proof of Proposition 3.4.1 of [3]. Indeed, any such map x factors through
the localization of R at its prime ideal p = ker(x : R → K ). Post-composing F with
the pullback along ιp : SpecRp → SpecR yields a functor ιp ◦F into QCoh(SpecRp) '

ModRp
with Rp a local ring. By Proposition 5.12 this composite is therefore naturally

isomorphic to the pullback by a morphism fp : SpecRp → X . Pre-composing withπ :
SpecK → SpecRp we obtain the desired K -point of X . The desired global morphism
SpecR → X is then determined by extending the assignment x 7→π◦ fp to maps from
arbitrary affine schemes SpecS.

Noting a higher-categorical result for spectra of cocomplete monoidal categories,
we are now able to establish the main theorem of this section.

Theorem 5.14. For any cocomplete monoidal category A , its categorical spectrum
Spec(A ) is an honest stack with respect to the Zariski topology on all schemes. In
particular, its 1-categorical truncation Spec(A ) is a Zariski stack.

Proof. This follows from Theorem 4.23 of [22]—in fact, as [3] points out, Spec(A ) is
even a stack in the stronger fpqc topology.

Proof of Theorem 5.1. Of course, the proof proceeds by reduction to the previous
cases. First, let U = { j : U = Spec A ,→ Y } be an open cover by affine schemes. It
is clear that the pullback defines a functor (in both X and Y )

HomSch(Y → X ) → Spec(QCoh(X ))(Y ).

It is not difficult13 to check that this map is fully faithful, or equivalently, that ex-
istence of a monoidal natural transformation between pullback functors implies
equality of the underlying morphisms. Moreover as a consequence of Theorem 5.14
invertibility can be checked locally in Sch, i.e. the claim of Theorem 5.1 is a Zariski-
local one. Equivalently, a cocontinuous monoidal functor F : QCoh(X ) → QCoh(Y )
is the pullback by a morphism f : Y → X if and only if each composite (with j ∈U )

QCoh(X )
F−−→ QCoh(Y )

j∗−−→ QCoh(U )

13This follows from a strengthening of our Proposition 3.6 which uses quasiseparatedness of X in a
critical way, see Proposition 3.1.1 of [3] for the details.
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is induced by the pullback via a morphism U → X . But now we can assume that Y is
affine and directly appeal to Proposition 5.13, so we are done.

We conclude immediately that if QCoh(X ) and QCoh(Y ) are monoidally equiv-
alent (and X is qcqs), then X ∼= Y , and every such monoidal equivalence up to
monoidal natural isomorphism arises from an ordinary morphism f : Y → X . There-
fore in particular, this proves Rosenberg’s reconstruction theorem for monoidal equiv-

alences QCoh(X )
⊗' QCoh(Y ).

6 Understanding arbitrary equivalences

The results of Brandenburg–Chirvasitu [2] thus establish the reconstruction theo-

rem for monoidal functors QCoh(X )
⊗' QCoh(Y ), and it remains to handle the gen-

eral case. Using the general Eilenberg–Watts theory of Nyman [16] we can extend
the Eilenberg–Watts theorem to classes of categories of quasicoherent sheaves, and
thereby continue to execute the general strategy which we applied to handle the
affine case in Section 4. Of course, in order to generalize the Eilenberg–Watts the-
orem one must have a suitable notion of bimodules, and of the tensor product of
quasicoherent sheaves over different schemes.

Thus we begin by explaining the basic construction. Let X and Y be suitably
nice14 schemes, and let F be a quasicoherent sheaf over the scheme X ×Y . Now
fix G ∈ QCoh(Y ), and observe that the canonical projection πY : X ×Y → Y gives
rise to a pullback functor π∗

Y : QCoh(Y ) → QCoh(X ×Y ). This means that we can
take the tensor product of F with π∗

Y G in the category QCoh(X ×Y ). The result-
ing object pushes forward under the projection πX : X ×Y → X to yield an object
πX∗(F ⊗QCoh(X×Y )π

∗
Y G ) of QCoh(X ). The end result is that we have essentially ten-

sored a quasicoherent sheaf G over Y with a quasicompact “(X ,Y )-bimodule” F to
obtain a quasicoherent sheaf over X . This motivates the following definition.

Definition 6.1 (Generalized tensor product). Let F ∈ QCoh(X×Y ) and G ∈ QCoh(Y ).
Whenever the pushforward πX∗ exists we define the generalized tensor product of F

and G by
F ⊗QCoh(Y ) G :=πX∗(F ⊗QCoh(X×Y )π

∗
Y G ) ∈ QCoh(X ).

The following definition15 plays a key role in Nyman’s development [16].

Definition 6.2. We say that a functor F : QCoh(X ) → QCoh(Y ) is totally global if the
composite F ◦ j∗ is zero for every open immersion j : U ,→ X from an affine scheme.

For our purposes, the main Theorem 1.4 of Nyman [16] specialises for X quasi-
compact separated and Y separated to give the following assertion.

Theorem 6.3 (Nyman, [16]). Let F : QCoh(X ) → QCoh(Y ) be a cocontinuous func-
tor. There exists a canonical quasicoherent sheaf WF ∈ QCoh(Y × X ) and a canonical
natural transformation

ΓF : F (−) →WF ⊗OX −
into the generalized tensor product with WF called the “Eilenberg–Watts morphism”.
Moreover, if X is an affine scheme, or if F is exact, then ΓF is a natural isomorphism.

14We will need that X is quasicompact, and that X and Y are both separated, and we will assume this
for the remainder of this section.

15Basic consequences are established in Section 4 of [16].
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Proof sketch. Nyman defines an Eilenberg–Watts functor

W− :
[

QCoh(X )
cocts.−−−−→ QCoh(Y )

]
→ QCoh(Y ×X )

by first obtaining elements W U
F ∈ QCoh(Y ×U ) for U ,→ X in a finite affine open cover

of X (thus we use quasicompactness of X ), in turn obtained from the affine case
established in [15] as Example 4.1. Separatedness of X is then used to glue the family
{W U

F } into the desired single quasicoherent sheaf over Y × X (see Subsection 5.2 of
[16], in particular the separatedness hypothesis ensures that a family of pushforward
maps exist).

The morphism ΓF is then constructed by first being defined on flat objects of
QCoh(X ) and then extending—in particular, here it is used that every object of QCoh(X )
is a quotient of a flat object whenever X is separated (e.g. by Lemma 1.1.4 of [17],
see the Section 6 of [16]). We then show that ΓF is compatible with restriction along
affine open subschemes of Y , which in fact implies that kerΓF and cokerΓF are
totally global. Since totally global functors out of the category of quasicoherent
sheaves over an affine scheme are zero (this is Nyman’s Corollary 6.7 of [16]), the
claim follows when X = SpecR, and in fact another consequence is that the claim
holds when F is exact as well.

Wielding Theorem 6.3 in the case at hand, we finally obtain the following result
in direct analogy with the affine case, and the original statement of Theorem 1.6.

Theorem 6.4 (Rosenberg’s reconstruction theorem, scheme version). Fix schemes X
and Y . If X is quasicompact separated and Y is separated then there is a canonical
bijection between the sets{

( f : Y → X , [L] ∈ K0(QCoh(Y ))) | f is an isomorphism and L is a line bundle
}

and

Spec(QCoh(X ))(Y ) =
{

F : QCoh(X ) → QCoh(Y ) | F is an equivalence
}

/ ∼

where the relation ∼ is the quotient by natural isomorphism.
In particular, the existence of any equivalence F : QCoh(X ) → QCoh(Y ) at all im-

plies the existence of an isomorphism f : Y → X .

Proof. By Theorem 6.3 an equivalence F : QCoh(X ) → QCoh(Y ) is naturally isomor-
phic to tensoring over QCoh(X ) with some WF ∈ QCoh(Y × X ). On the other hand a
quasi-inverse G : QCoh(X ) → QCoh(Y ) tensors with some WG ∈ QCoh(X ×Y ). As in
the affine case, the natural isomorphisms FG → idQCoh(Y ) and GF → idQCoh(X ) imply
that tensoring with πY ∗WF ∈ QCoh(Y ) is invertible, hence determines an autoequiv-
alence E of QCoh(Y ). Thus we obtain a composite of equivalences E ◦F which pre-
serves the tensor unit of QCoh(X ). As before E ◦F upgrades to a cocontinuous and
now also monoidal functor, and so therefore by appeal to the main Theorem 5.1 of
Section 5, the functor F is realized as the pullback by a morphism f : Y → X of or-
dinary schemes. The same argument can be employed beginning with G instead of
F , and functoriality of the constructions involved implies that we obtain a double-
sided inverse g of f —hence f is an isomorphism. Conversely each pair ( f , [L]) gives
rise to an equivalence QCoh(X ) → QCoh(Y ) as in the affine case, so this completes
the proof.
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7 The punchline: noncommutative schemes

The main theorem of Brandenburg–Chirvasitu in [3] asserts that, when we restrict
to quasicompact quasiseparated schemes, the collection of morphisms of schemes
Y → X is recovered from the collection of morphisms from QCoh(X ) to QCoh(Y ),
for a suitable notion of the latter kind of morphism. One way to interpret this result
is that it marks the starting point of noncommutative algebraic geometry.16

Indeed, there is a general program for producing a noncommutative analogue
of a more classical “commutative” construction; we show that a certain category C

consisting of the original “commutative” objects embeds into a larger category D,
whereby objects of C can be viewed as objects of D satisfying a particular condition.
To obtain analogous “noncommutative” objects, we simply drop this additional con-
dition and allow arbitrary objects of D.

In our case then, forming the category of quasicoherent sheaves is a 2-functor
QCoh from Sch into the 2-category of cocomplete abelian monoidal categories, and
Brandenburg–Chirvasitu’s Theorem 5.1 asserts that this embedding is fully faith-
ful in the appropriate 2-categorical sense (at least on a suitable full subcategory of
Sch). Explicitly, a reasonable guess for the right notion of a noncommutative scheme
becomes (approximately) a cocomplete abelian monoidal category. Indeed [5] in-
troduces the category of commutative 2-rings, with objects symmetric presentable
monoidal categories for which the tensor product distributes over colimits—and of
which our categories of quasicoherent sheaves are examples. One can then begin
to work with “higher algebraic geometry” using the category of 2-affine schemes,
opposite to the category of commutative 2-rings. From this viewpoint our usual
schemes and all of 1-algebraic geometry embeds via QCoh into the opposite cate-
gory of 2-affine schemes. Thus another interpretation of Brandenburg–Chirvasitu’s
main theorem is that “all of 1-algebraic geometry is 2-affine” [3].

On the other hand, the spectrum Spec of a cocomplete abelian monoidal cate-
gory is only one of several possible methods of “constructing” a noncommutative
scheme. Rosenberg (e.g. in [20]) has developed a number of other notions of spec-
tra including of triangulated categories, or of his “right exact” categories. There is
also the entire subject of derived noncommutative geometry, where one represents
an ordinary scheme X as its derived category of quasicoherent sheaves, or an A∞-
category enrichment thereof.17

Versions of Rosenberg’s reconstruction theorem also extend past the boundaries
of ordinary schemes. Calabrese–Groechenig in [4] extended the reconstruction the-
orem to quasicompact algebraic spaces, and gave (in comparison to Rosenberg and
Brandenburg) a proof along entirely different lines. Schäppi [21] has proved the di-
rect analogue of Theorem 5.1 for so-called Adams stacks. If we restrict to equiva-
lences which respect the monoidal structure, then the reconstruction theorem of
Lurie [14] is able to recover arbitrary geometric stacks. The list certainly goes on,
and this essay cannot, but hopefully some impression of the breadth of available
possibilities has been left; and we finish having at least made a start.

16The 1995 book [18] of Rosenberg, and the 1994 paper [1] of Artin and Zhang, are famous examples of
definitions of noncommutative analogues in algebraic geometry which utilize abelian categories [2].

17One of the primary motivations of this sort of construction is homological mirror symmetry, see [13].
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