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Abstract

This dissertation introduces a new model of the family Floer approach to Kont-

sevich’s homological mirror symmetry conjecture constructed via Morse theoretic

technology. Homological mirror symmetry (HMS) asserts a derived equivalence be-

tween the Fukaya category of a symplectic manifold 𝑋 and the category of coherent

sheaves on its mirror 𝑋∨. On the other hand, the family Floer program gives a modern

reinterpretation of the construction of a Strominger–Yau–Zaslow (SYZ) mirror, and

this mirror space typically comes equipped with a functor from the Fukaya category

of 𝑋 into coherent sheaves on 𝑋∨ which can be used to prove HMS as asserted.

In order to give an analogous presentation of this story, we define the Morse–

Fukaya algebra 𝒜 associated to a suitable class of SYZ fibrations 𝜋 : 𝑋 → 𝐵; this is

a curved 𝐴∞-algebra determined by a Morse function on the total space 𝑋, taking

coefficients in analytic functions on its rigid analytic mirror space. For an appropriate

choice of Morse function, 𝒜 can be understood as a (suitably deformed) algebra of

Čech cochains valued in polyvector fields on 𝑋∨. We then construct an 𝐴∞-functor

from (a suitable subcategory of) the Fukaya category of 𝑋 into the category mod-𝒜
of modules over 𝒜 implementing the expected correspondence. Along the way we

record comparison maps which together witness invariance of our constructions under

a change of auxiliary technical choices.
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Chapter 0

Overview

The Fukaya category of a symplectic manifold is an algebraic package—an example of

an 𝐴∞-category—which encapsulates its Lagrangian Floer theory. The purpose of this

dissertation is to introduce a new model of the family Floer approach to Kontsevich’s

homological mirror symmetry conjecture, constructed via Morse theoretic technology,

for the purpose of proving Theorem 𝐴.

Theorem A.1 There is a functor of curved 𝐴∞-categories

𝒞 : ℱsec → mod-𝒜

from the Fukaya category of Lagrangian sections of a (suitable) SYZ fibration 𝜋 : 𝑋 → 𝑄 into

the category of modules over the Morse–Fukaya algebra𝒜 of the fibration 𝜋.

Below we briefly summarize the approach to mirror symmetry taken in this dis-

sertation, recalling some of the context in which it resides along the way.

0.1 Synopsis

The Strominger–Yau–Zaslow (SYZ) conjecture [SYZ96], and homological mirror sym-

metry (HMS) as originally set out by Kontsevich [Kon95b], are conjectures spawned

from the mirror symmetry phenomenon observed by string theorists. Roughly speak-

1This is Theorem 4.27 below.
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2 Overview

ing and as originally understood, SYZ mirror symmetry begins with a fibration of

some kind of Kähler manifold by Lagrangian tori, and builds from this information a

dual torus fibration via a geometric recipe. The difficulty is that the original fibration

is allowed to have singular fibers (and generally will), and so the constructed mirror

must be deformed accordingly.

On the other hand, homological mirror symmetry asserts a derived equivalence

between the Fukaya category of a symplectic manifold and the category of coher-

ent sheaves on its mirror [KS01]. Though in general it must be decided—as HMS is

extended much beyond its initial incarnation comparing Calabi–Yau manifolds with

their honest Calabi–Yau mirrors—what precisely is meant by Fukaya category, and

whether to replace the derived category of coherent sheaves with for instance a non-

commutative analogue.

The family Floer program [Fuk02; Abo14; Abo17; Tu14; Yua20] gives a modern

reinterpretation of the construction of the SYZ mirror of 𝜋 : 𝑋 → 𝑄 as a moduli space

of objects of the Fukaya category of 𝑋 supported on the fibers of the fibration. The

resulting object, technically a rigid analytic mirror 𝑋∨ of 𝑋, comes equipped with a

functor from the Fukaya category of 𝑋 into coherent sheaves on 𝑋∨ which can then,

as an application, be used to prove HMS as asserted.

The Morse–Fukaya algebra 𝒜 of the fibration 𝜋 : 𝑋 → 𝑄 is an 𝐴∞-algebra deter-

mined by a Morse function on the total space𝑋, taking coefficients in analytic functions

on its mirror. For an appropriate choice of Morse function,𝒜 can be understood as a

(suitably deformed) algebra of Čech cochains valued in polyvector fields on the SYZ

mirror of 𝑋. The functor we construct in Theorem 𝐴 then gives an analogous presen-

tation of this story; here the category mod-𝒜 plays the role of a category of coherent

sheaves as we explain below.
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0.1.1 The Morse–Fukaya algebra of an SYZ fibration

Throughout fix a Kähler manifold (𝑋, 𝜔, 𝐽)with symplectic form𝜔 and almost complex

structure 𝐽. Let 𝜋 : 𝑋 − 𝐷 → 𝐵 be a fibration of 𝑋 by Lagrangian tori, where 𝐷 ⊂ 𝑋 is

a complex hypersurface representing the anticanonical class of 𝑋. The standard way

to proceed is to first construct a mirror to the complement 𝑋0 = 𝑋 − 𝐷.

As an act of technical expediency let us fix any compact, simply connected subset

𝐵0 ⊂ 𝐵 which is disjoint from the critical values of 𝜋, and let 𝑋00 = 𝜋−1(𝐵0) ⊂ 𝑋0 be

the corresponding restriction of the total space. For now also assume that 𝑓 : 𝑋00 → R

is any Morse–Smale function with respect to a choice of metric on 𝑋00.

The basic objects we consider are (pseudoholomorphic) treed disks; geometrically, these

are continuous maps 𝑢 : Δ → 𝑋00 of decorated domains Δ built from the complex

unit disk via an inductive gluing procedure, and which satisfy relations determined

by their decorations (as developed by Charest–Woodward in [CW22] and originally

Cornea–Lalonde [CL06]). Namely, an additional copy 𝐶 of the unit disk may be glued

into Δ by attaching one endpoint of a new line segment to the boundary 𝜕𝐶, and

the other endpoint to the boundary of a disk already in Δ. We call the image of

each such disk 𝐶 in Δ a disk component. It is also desirable to permit the attachment

of semi-infinite line segments (rays) to disk boundaries, and to always remember the

orientation of line segments we attach (whether finite or semi-infinite). Figure 1 depicts

a schematic diagram of a treed disk domain built from two complex unit disks and

four line segments (three of the segments having open ends).

Write 𝑆 ⊂ Δ for the interior of the disks in Δ (the surface part) and 𝑇 ⊂ Δ for the

interior of the attached line segments (the tree part); then 𝑢 restricts to maps 𝑢𝑆(𝑥) and

𝑢𝑇(𝑡) defined on 𝑆 and 𝑇 respectively. Let 𝑗 be the complex structure on 𝑆 induced by

the standard complex structure on the unit disk.

Definition 0.2. A continuous map 𝑢 : Δ → 𝑋00 with treed disk domain Δ is pseudo-

holomorphic if we have both
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𝑥1

𝑥2

𝑥0

𝐹𝑏1 𝐹𝑏2

Figure 1: A schematic diagram of a pseudoholomorphic treed disk.

(0.1.I) 𝑢 is pseudoholomorphic on the surface part: 𝐽 ◦D 𝑢𝑆 = D 𝑢𝑆 ◦ 𝑗, and

(0.1.II) 𝑢 is a Morse gradient flow line on the tree part: d𝑢𝑇
d𝑡 = ∇ 𝑓 ◦ 𝑢𝑇 .

In other words, 𝑢 must consist of a family of pseudoholomorphic disks attached along

their boundaries, according to the edges of a tree, via Morse gradient flow lines.

Note that we have already suppressed several technical details; for example, in

practice we perturb the pseudoholomorphic curve equation (0.1.I) due to transver-

sality issues which arise while setting up the theory. In general, we allow 𝐽 to be a

domain-dependent almost complex structure determined by a background system of

perturbation data, and similarly for (0.1.II). This data is chosen and managed consis-

tently via an extension of the scheme of Charest–Woodward [CW22] (using stabilizing

divisors) to the family setting. Relatedly, it is often convenient to equip points of treed

disk domains with certain combinatorial bookkeeping labels, but we suppress these

here as well.

Pseudoholomorphic treed disks give rise to algebraic operations via fixing a family

of domains, prescribing boundary conditions, and then taking signed counts of their

zero dimensional (compact) moduli spaces. These algebraic operations act on a com-

plex with Morse theoretic generators, and this complex takes coefficients in a sheaf
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𝒪an obtained from the analytic functions on the uncorrected mirror of 𝑋0. Let us now

describe each of these details.

First, it is not difficult for us to arrange that the Morse function 𝑓 on𝑋00 lifts a Morse

function on 𝐵0 (so that their critical points coincide under 𝜋), and that 𝑓 restricted to

each fiber is perfect (i.e. gives a minimal Morse model for the 𝑛-torus). Let 𝑃 be a

cellular decomposition of 𝐵0 with the property that each 𝑘-cell 𝜎 ∈ 𝑃[𝑘] contains in its

interior a unique index 𝑘 critical point 𝑏𝜎, and that 𝜎 is itself the closure of the stable

manifold of 𝑏𝜎.

Writing 𝐹𝑏 = 𝜋−1(𝑏) for the fibers, the uncorrected mirror then has underlying set

of points simply the disjoint union [KS01; Abo14]

𝑋∨0 =
⊔
𝑏∈𝐵0

H1(𝐹𝑏 , 𝑈Λ)

with 𝑈Λ = val−1(0) the unitary subgroup of the Novikov field Λ we work over.2

Identify the groups 𝜋2(𝑋, 𝐹𝑏) via isotoping fibers; then for each 𝛽 ∈ 𝜋2(𝑋, 𝐹𝑏) we

naturally obtain a function

𝑧𝛽 = 𝑇𝜔(𝛽) hol(𝜕𝛽)

on 𝑋∨0. In the definition of this Floer-theoretic weight, 𝜔(𝛽) is the symplectic area of

𝛽 and hol(𝜕𝛽) denotes3 evaluation of points of 𝑋∨0 on the class 𝜕𝛽. The set 𝑋∨0 is

naturally endowed with the structure of a rigid analytic space (having (Λ∗)𝑛 as a local

model) for which the functions 𝑧𝛽 are analytic. A chart is furnished by (𝑧𝛽𝑖 )1≤𝑖≤𝑛 , with

the classes 𝛽𝑖 chosen so that the 𝜕𝛽𝑖 form a basis of H1(𝐹𝑏 ;Z).

2The Novikov field with coefficients in the field k (of characteristic zero, which we fix throughout)
consists of series in the formal variable 𝑇 of the form

Λ =
{∑

𝑖 𝑐𝑖𝑇
𝑥𝑖 : 𝑐𝑖 ∈ k, 𝑥𝑖 ∈ R, 𝑥𝑖 →∞

}
,

and comes equipped with a valuation map val :
∑

𝑖 𝑐𝑖𝑇
𝑥𝑖 ↦→ min{𝑥𝑖 : 𝑐𝑖 ≠ 0}.

3This notation is due to the fact that 𝑋∨0 is realized as a moduli space of fibers of 𝜋 equipped with
a unitary rank 1 local system—since points of which are determined by their holonomy map, they
equivalently belong to H1(𝐹𝑏 , 𝑈Λ) for some 𝑏 ∈ 𝐵.
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There is a natural projection 𝜋∨ : 𝑋∨0 → 𝐵0 and, after suitably refining 𝑃 by

perturbing 𝑓 , the collection of analytic functions on (𝜋∨)−1(star(𝜎)) for each 𝜎 ∈ 𝑃

assemble into a sheaf 𝒪an = 𝜋∨∗ (𝒪𝑋∨0) of universal weights.

Definition 0.3. The Morse–Fukaya algebra 𝒜 = CM•(𝜋, 𝑓 ;𝒪an) is the module freely

generated by the critical points of 𝑓 , with coefficients taken in 𝒪an, equipped with

algebraic operations 𝜇𝑑 for 𝑑 ≥ 0 we outline below.

Fix 𝑑+1 points 𝑥0 , 𝑥1 , . . . , 𝑥𝑑 ∈ crit 𝑓 . We say that a pseudoholomorphic treed disk

𝑢 : Δ→ 𝑋00 has 𝑑 inputs and 1 output if, respecting orientations, in constructing Δ we

attached exactly 𝑑 copies of the ray (−∞, 0] and 1 copy of the ray [0,∞). Call 𝑥 ∈ 𝑋00

the input (resp. output) of the ray 𝑅 = (−∞, 0] ⊂ Δ (resp. 𝑅 = [0,∞) ⊂ Δ) whenever

lim|𝑡|→∞ 𝑢|𝑅(𝑡) = 𝑥. Thus Figure 1 depicts a pseudoholomorphic treed disk with 2

inputs 𝑥1 and 𝑥2 and 1 output 𝑥0. Note that a treed disk domain Δ with 1 output has

a canonical ordering on its inputs induced by the orientation of the disk components

of Δ.

For each 𝛽 ∈ 𝜋2(𝑋, 𝐹𝑏0)we may form the moduli spaceℳ𝑑+1(𝑥0 , . . . , 𝑥𝑑; 𝛽) from all

(suitably perturbed) pseudoholomorphic treed disks 𝑢 : Δ→ 𝑋00 with:

• Disk boundaries lying on fibers—each disk component 𝐶 ⊂ Δ satisfies 𝑢(𝜕𝐶) ⊂
𝐹𝑏 for some 𝑏 ∈ 𝐵 (all possibly different).

• Representing class 𝛽—each disk component 𝐶 ⊂ Δ gives rise to a class [𝑢|𝐶] ∈
𝜋2(𝑋, 𝐹𝑏) hence in 𝜋2(𝑋, 𝐹𝑏0), and we demand that all such classes sum to 𝛽.

• Correct I/O—we require that 𝑢 has 𝑑 inputs 𝑥1 , . . . , 𝑥𝑑 and 1 output 𝑥0.

• Stable components—the map 𝑢 obeys a family of straightforward technical con-

ditions4 which ensure we obtain a compact Hausdorff moduli space with the

correct dimension.
4For instance, we require that each disk component on which 𝑢 is constant must meet at least 3 line

segments.
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We must of course also take care to develop a consistent scheme to orient these moduli

spaces, though we do not elaborate further here on these technical details [WW15;

Fuk+10b].

Now given x = (𝑥1 , . . . , 𝑥𝑑) ∈ crit 𝑓 we set

𝜇𝑑(x) :=
∑
𝛽,𝑥0

#ℳ𝑑+1(𝑥0 , 𝑥1 , . . . , 𝑥𝑑; 𝛽) · 𝑧𝛽𝑥0 , (0.1.III)

where # is the signed count of oriented points, and the sum is taken over classes

𝛽 and critical points 𝑥0 for which the expected dimension of ℳ𝑑+1(𝑥0 , 𝑥1 , . . . , 𝑥𝑑; 𝛽)
is zero. In accordance with the Z2-grading induced by Morse index mod 2, upon

declaring that each 𝜇𝑑 is 𝒪an-linear we obtain a family of graded multiplication maps

𝜇𝑑 :𝒜⊗𝑑 →𝒜[2 − 𝑑].

Theorem 0.4. The operations 𝜇𝑑 endow the Morse–Fukaya algebra 𝒜 with the structure of

a curved 𝐴∞-algebra [Aur23]. In other words, for each 𝑑 > 0 and homogeneous elements

𝑎1 , . . . , 𝑎𝑑 ∈ 𝒜 of respective degrees |𝑎𝑖| we have the identity [Sei08a]

0 =
∑

𝑚+𝑛≤𝑑
(−1)♥𝜇𝑑−𝑛+1(𝑎1 , . . . , 𝑎𝑚 , 𝜇𝑛(𝑎𝑚+1 , . . . , 𝑎𝑚+𝑛), 𝑎𝑚+𝑛+1 , . . . , 𝑎𝑑), (0.1.IV)

with ♥ = 𝑚 +∑𝑚
𝑖=1|𝑎𝑖|.

One obtains a proof of Theorem 0.4 by a careful analysis of the boundary com-

ponents of the higher dimensional strata of the moduli spaces ℳ𝑑+1(𝑥0 , . . . , 𝑥𝑑; 𝛽)
we have just introduced; ultimately, the signed count of points on the boundary of a

1-dimensional oriented compact moduli space is zero. For example, when a Morse gra-

dient flow line in a treed disk “breaks” (on the boundary of a moduli space) through

an intermediate critical point, the treed disk naturally decomposes as the composi-

tion of two less complex treed disks, one stacked upon the other. All such possible

decompositions appear as terms in (0.1.IV).
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0.1.2 An HMS comparison functor

We associate to the Lagrangian fibration 𝜋 : 𝑋00 → 𝐵0 a full subcategory ℱsec of the

Fukaya category of 𝑋, whose objects are Lagrangian sections 𝐿 of 𝜋 over 𝐵0. Each such

section is naturally equipped with a Morse function 𝑓𝐿 via restriction of the global

Morse function on 𝑋00. For simplicity, fix a finite collection {𝐿𝑖} ⊂ ℱsec intersecting

pairwise transversely. If 𝐿𝑖 ≠ 𝐿 𝑗 we let Hom(𝐿𝑖 , 𝐿𝑗) be freely generated by the points

of 𝐿𝑖 ∩ 𝐿 𝑗 with coefficients in Λ. If instead 𝐿𝑖 = 𝐿 𝑗 we substitute the Fukaya–Morse

algebra of the ordinary Lagrangian 𝐿 = 𝐿𝑖 as defined by Charest–Woodward [CW22]

(i.e. Hom(𝐿, 𝐿) is generated by critical points of 𝑓𝐿 with coefficients in Λ—the algebra

operations are as above, except that we now require all Morse flow lines and disk

component boundaries to lie wholly in 𝐿). The composition of, for example, morphisms

𝑝 ∈ Hom(𝐿1 , 𝐿2) and 𝑞 ∈ Hom(𝐿2 , 𝐿3) between distinct Lagrangian sections is the

familiar multiplication in the Fukaya category; we count pseudoholomorphic strips

with boundary on 𝐿1∪𝐿2∪𝐿3 meeting 𝑝, 𝑞, and all possible third points of Hom(𝐿1 , 𝐿3),
in the usual way.

We are now in a position to see how the comparison functor 𝒞 : ℱsec → mod-𝒜 of

Theorem 𝐴 is defined. First, on objects we set

𝐿 ∈ ℱsec ↦→ 𝒞(𝐿) := CM•(𝜋, 𝑓𝐿;𝒪an),

this module being generated by the points of crit 𝑓𝐿 with coefficients in𝒪an. The object

𝒞(𝐿) carries a family of 𝐴∞-module action maps ⊳𝑑 : 𝒞(𝐿) ⊗ 𝒜⊗𝑑 → 𝒞(𝐿) which,

according to the natural analogue of (0.1.III), now count moduli spaces of treed disks

of the kind for example schematically depicted in Figure 2a. The key modification is

that we now allow the boundary of disk components to lie on the union of a particular

fiber and some number of Lagrangian sections; Morse gradient flow lines are in turn

suitably constrained to either a fiber or particular sections.
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𝑦1

𝑥1

𝑦0

𝐿

𝐹𝑏

(a) Coefficient of 𝑦0 in 𝑦1 ⊳1 𝑥1

𝑦1

𝑦0

𝑝
𝐹𝑏

𝐿1

𝐿2

𝐿1

𝐿2

(b) Coefficient of 𝑦0 in 𝒞 1(𝑝)(𝑦1)

Figure 2: A pair of schematic diagrams of treed disks captioned with the coefficient to
which their counts contribute in the associated module action or morphism. Bound-
aries and line segments constrained to a Lagrangian section are shown in color.

Similarly, a morphism 𝑝 ∈ 𝐿1∩𝐿2 = Hom(𝐿1 , 𝐿2) gives rise to a morphism 𝒞(𝐿1) →
𝒞(𝐿2) of 𝐴∞-modules by counting treed disks such as those schematically of the type

depicted in Figure 2b or, for the higher order terms of the 𝐴∞-module homomorphism,

analogous configurations with additional inputs. Note that in this particular example

both of the horizontal line segments in Figure 2b are designated Morse flow lines

wholly contained in the transverse intersection 𝐿1 ∩ 𝐿2—hence their image in any

pseudoholomorphic treed disk must be constant. The requisite 𝐴∞-relations for both

the module actions and module morphisms hold by essentially the same analysis as

in the previous section; we again carefully consider the several ways treed disks such

as those schematically depicted in Figure 2 can break.



10 Overview

0.2 Layout

The technical foundations necessary to construct the algebra 𝒜 are considerable. In

Chapter 1 we recall fundamental facts from the theory of pseudoholomorphic curves

and Morse theory, principally as a vehicle to introduce our basic terminology. In

Chapter 2 we treat the moduli spaces of the fundamental objects we study—so-called

pseudoholomorphic treed disks, and prove the necessarily generic regularity results of

general type required for Floer theory. In Chapter 3 we actually construct the Morse–

Fukaya algebra 𝒜, in particular proving compactness of the relevant moduli spaces

and therefore well-definedness of the multiplication law, before discussing invariance

of the construction under all choices. In Chapter 4 we define the operations specifying

the family Floer functor 𝒞 , in the process making the necessary enhancements of the

constructions of Chapters 2 and 3, finally proving that this data assembles into an

actual 𝐴∞-functor.



Chapter 1

Preliminaries

Throughout fix a Kähler manifold (𝑋, 𝜔, 𝐽) with symplectic form 𝜔, almost complex

structure 𝐽, and metric 𝑔. Let 𝜋 : 𝑋 − 𝐷 → 𝑄 be a fibration of 𝑋 by Lagrangian tori,

where 𝐷 ⊂ 𝑋 is a complex hypersurface representing the anticanonical class of 𝑋. The

standard way to proceed is to construct a mirror to the complement 𝑋0 := 𝑋 − 𝐷 of

this divisor [Aur23].

In order to avoid at the outset issues of convergence near singular fibers 𝐹𝑞 ⊂ 𝑋0

of the fibration, fix a compact subset 𝑄 ⊂ 𝑄 disjoint from the critical values of 𝜋,

and let 𝑋 := 𝜋−1(𝑄) ⊂ 𝑋0 be the corresponding restriction of the total space. The

perturbations and auxiliary structures which we construct in the sequel will be defined

directly on 𝑋.

1.1 Morse theory

We begin by recalling basic facts from Morse theory, introducing our terminology and

notation as we go. Let 𝑓 : 𝑋 → R be a smooth function.

Definition 1.1. Denote by crit 𝑓 the collection of critical points of 𝑓 . A critical point

𝑥 ∈ crit 𝑓 is non-degenerate if the Hessian Hess( 𝑓 ) is invertible at 𝑥. The index 𝐼(𝑥) of a

non-degenerate critical point is its Hessian’s number of negative eigenvalues.

The gradient ∇𝑔 𝑓 defines a gradient flow on 𝑋. For any [𝑎, 𝑏] ⊂ [−∞,∞], a continu-

ous map 𝑢(𝑡) : [𝑎, 𝑏] → 𝑋 which is smooth on (𝑎, 𝑏) and obeys 𝑢′(𝑡) = ∇𝑔
𝑢(𝑡) 𝑓 is a Morse

11
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gradient flow trajectory from 𝑢(𝑎) to 𝑢(𝑏). For each 𝑥 ∈ crit 𝑓 we have an ascending set

𝑊↑(𝑥) and descending set 𝑊↓(𝑥) defined by

𝑊↑(𝑥) :=
{
𝐼(𝑏) | 𝑢 : [−∞, 𝑏] → 𝑋 is a gradient flow line with 𝑢(−∞) = 𝑥

}
and

𝑊↓(𝑥) :=
{
𝐼(𝑎) | 𝑢 : [ 𝑎,+∞] → 𝑋 is a gradient flow line with 𝑢(+∞) = 𝑥

}
.

Theorem 1.2 (Stable manifold theorem). If 𝑓 has no degenerate critical points then 𝑊↑(𝑥)
and 𝑊↓(𝑥) are each smooth manifolds and we have

dim𝑊↑(𝑥) = dim𝑋 − 𝐼(𝑥) and dim𝑊↓(𝑥) = 𝐼(𝑥).

Definition 1.3. The function 𝑓 : 𝑋 → R is Morse–Smale (or simply Morse) if all critical

points of 𝑓 are non-degenerate and for all 𝑥0 , 𝑥1 ∈ crit 𝑓 the manifolds 𝑊↓(𝑥0) and

𝑊↑(𝑥1)meet transversely.1

Henceforth assume that 𝑓 is Morse.

Definition 1.4. Each space 𝑊↓(𝑥0) and 𝑊↑(𝑥1) carries an action of R by the gradient

flow, or equivalently for Morse gradient flow trajectories with domain [−∞,∞], by

domain translation. This action is compatible with passing to the intersection𝑊↓(𝑥0)∩
𝑊↑(𝑥1). We define the moduli space of Morse gradient flow trajectories from 𝑥0 to 𝑥1, denoted

byℳ(𝑥0 , 𝑥1), as the quotient of 𝑊↓(𝑥0) ∩𝑊↑(𝑥1) by this R-action.

Theorem 1.5. Each moduli spaceℳ(𝑥0 , 𝑥1)

• is a smooth manifold of dimension 𝐼(𝑥0) − 𝐼(𝑥1) − 1,

• has a compactificationℳ(𝑥0 , 𝑥1) with boundary strata consisting of the broken Morse

gradient flow trajectories2 from 𝑥1 to 𝑥0 (see Figure 1.1), and

1Thus each intersection 𝑊↓(𝑥0) ∩𝑊↑(𝑥1) is again a smooth manifold of dimension 𝐼(𝑥0) − 𝐼(𝑥1).
2Precise models for these compactified moduli spaces appear for example in [Fuk93]. The general

formalism of our Chapter 2 subsumes the concept as a special case of Definition 2.16.
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• there exist coherent choices of orientations of the descending and ascending manifolds

𝑊↓(𝑥0) and 𝑊↑(𝑥1) which induce orientations on the moduli spacesℳ(𝑥0 , 𝑥1) compat-

ible with restriction to boundary strata.

𝑥1

𝑥0

Figure 1.1: A breaking of a Morse gradient flow trajectory on the sphere at the bound-
ary of the moduli spaceℳ(𝑥0 , 𝑥1) ⊂ ℳ(𝑥0 , 𝑥1) into a broken Morse trajectory through
the point 𝑥2.

As in [Fuk93], there is also the generalized notion of a Morse gradient flow tree

beginning at multiple input points 𝑥1 , 𝑥2 , . . . , 𝑥𝑛 simultaneously and again flowing to

a single output 𝑥0 (see Figure 1.2). Arranging via some strategy that transversality

concerns are assuaged—such as in Theorem 2.45 below—we obtain the following

theorem.

Theorem 1.6 ([Fuk93], [Maz22, Theorem I.9]). The Morse complex 𝐶𝑀•( 𝑓 ) := R⟨crit 𝑓 ⟩,
freely generated by the critical points of 𝑓 and graded by index 𝐼, is equipped with 𝑛-ary
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multiplications

𝜇𝑛 : 𝐶𝑀•( 𝑓 )⊗𝑛 → 𝐶𝑀•( 𝑓 )[2 − 𝑛]

endowing 𝐶𝑀•( 𝑓 ) with the structure of a flat 𝐴∞-algebra. Each multiplication 𝜇𝑛 is respec-

tively defined by counting Morse gradient flow trees with 𝑛 inputs.

𝑥2

𝑥1
𝑥3

𝑥0

Figure 1.2: A Morse gradient flow tree with 3 inputs 𝑥1, 𝑥2, and 𝑥3, and output 𝑥0.

1.2 Pseudoholomorphic disks and curves

There is a related theory of compactified moduli spaces of pseudoholomorphic curves,

essentially arising as the infinite-dimensional analogue of the Morse case. In order

to make sense of the statement of the main theorem, we introduce the key tool upon



§1.2 Pseudoholomorphic disks and curves 15

which essentially all of our constructions fundamentally rely for well-definedness.

Definition 1.7. An bounded linear mapΦ : 𝑉 →𝑊 between Banach spaces is Fredholm

if dim kerΦ < ∞ and dim cokerΦ < ∞. The index of Φ is

indΦ := dim kerΦ − dim cokerΦ.

A 𝐶𝑞-map 𝑓 : ℬ → ℰ between connected Banach manifolds is 𝐶𝑞-Fredholm if

𝐷 𝑓 : 𝑇ℬ → ℰ is pointwise Fredholm. The index of 𝐷 𝑓 is constant on ℬ, and gives

index ind 𝑓 of 𝑓 .

Theorem 1.8 (Sard–Smale [Sma65]). Let 𝑓 : ℬ → ℰ be a 𝐶𝑞-Fredholm map between

separable Banach manifolds with 𝑞 > max(ind 𝑓 , 0). The set of regular values of 𝑓 is comeager

in ℰ.

Denote by 𝑗 the canonical complex structure on both the complex unit disk D and

sphere CP1.

Definition 1.9. A smooth map 𝑢 : Σ→ 𝑋 is respectively a 𝐽-holomorphic disk (if Σ = D)

or curve (if Σ = CP1) when D𝑧𝑢 ◦ 𝑗 = 𝐽 ◦D𝑧𝑢 for all 𝑧 ∈ Σ. Equivalently, 𝑢 : 𝐶 → 𝑋 is

𝐽-holomorphic when 𝑢 is a zero of the operator

𝜕𝐽𝑢 := 1
2 (D𝑢 + 𝐽 ◦D𝑢 ◦ 𝑗). (1.2.I)

A 𝐽-holomorphic disk or curve 𝑢 is simple if it is not multiply covered. Denote by

ℳ∗(Σ, 𝛽) the moduli space of 𝐽-holomorphic maps with domain Σ and representing the homol-

ogy class3 𝛽.

The following transversality theorem is the analogue of the first part of Theorem 1.5.

3When Σ = D we require that 𝑢 takes 𝜕D into a fixed Lagrangian 𝐿 ⊂ 𝑋.
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Theorem 1.10 ([MS12, Theorem 3.1.6, Theorem A.3.3]). The operator 𝜕𝐽 of (1.2.I) may be

recast, parameterized over the space of all 𝜔-tame almost complex structures of class 𝐶 𝑙 on 𝑋,

as a section of a particular separable Banach vector bundle.

Interpreted this way, the derivative 𝐷𝑢 of this section at an almost complex structure 𝐽

and 𝐽-holomorphic map 𝑢 : Σ → 𝑋 is a Cauchy–Riemann operator in the sense of [MS12,

Appendix C], hence a Fredholm operator of index4

𝐼(𝛽) := ind𝐷𝑢 =


dim 𝐿 + 2𝑐1(𝑢∗T𝑋, 𝑢|∗

𝜕DT𝐿) Σ = D

dim𝑋 + 2𝑐1(𝑢∗T𝑋) Σ = CP1
. (1.2.II)

In particular, for a comeager set of 𝐽 the moduli spaceℳ∗(Σ, 𝛽) is a smooth manifold of

dimension

dimℳ∗(Σ, 𝛽) = 𝐼(𝛽).

The remainder of the analogy of Theorem 1.5 is accounted for by the following

theorem of Gromov [Gro85], subsequently recast here in more modern terms due

to Kontsevich [Kon95a]. The key idea is that, by suitably enhancing the notion of

pseudoholomorphic disks and curves by permitting nodal unions of the same, and

recording distinguished marked points in their domains (see Figure 1.3), there is a

well-defined notion of stable pseudoholomorphic disk and spheres.5

Theorem 1.11 (Gromov compactness [MS12, Theorem 5.3.1]). Let (𝐽𝑘) be a sequence of

𝜔-tame almost complex structures 𝐶∞-converging to 𝐽, for which each element of the sequence

(𝑢𝑘 : Σ→ 𝑋) of maps of disks or spheres are each respectively 𝐽𝑘-holomorphic. If the symplectic

area of the sequence (𝑢𝑘) is uniformly bounded, then there is a subsequence which converges in

a suitable sense to a stable pseudoholomorphic disk or sphere 𝑢.

4Here 2𝑐1(𝑢∗T𝑋, 𝑢|∗
𝜕DT𝐿) denotes twice the relative Chern class of the bundle pair, i.e. the Maslov class

of 𝛽 = [𝑢].
5We give a precise model in Chapter 2 of particular objects—namely pseudoholomorphic treed disks—

which subsume this concept.
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Moreover, there is a moduli spaceℳ(Σ, 𝛽) of all stable maps representing a fixed class 𝛽,

equipped with a natural topology known as the Gromov topology compatible with this notion of

convergence. For each 𝐸 > 0, every subspace of stable maps with total symplectic area at most

𝐸 is compact.

𝛽3 𝛽4

𝛽2

𝛽1

𝛽5

𝛽

Figure 1.3: An example stable limiting configuration of a sequence of pseudoholomor-
phic disks of class 𝛽 ∈ 𝐻2(𝑋, 𝐿)degenerating a nodal union of disks of respective classes
𝛽𝑖 ∈ 𝐻2(𝑋, 𝐿) at the boundary of the compactified moduli space. Here 𝛽 =

∑5
𝑖=1 𝛽𝑖)

and the distinguished marked point stabilizing a constant component (with 𝛽4 = 0) is
indicated by a blue cross.





Chapter 2

Pseudoholomorphic treed disks

In this chapter we lay the necessary technical foundations, defining the basic objects we

study—so-called “pseudoholomorphic treed disks”—building directly on the ideas of

Charest–Woodward [CW22] and Venugopalan–Woodward–Xu [VWX20]. In various

forms, these constructions (incorporating Fukaya’s Morse gradient flow trees [Fuk93] and

pseudoholomorphic disks) have appeared as the clusters of Cornea–Lalonde [CL06]

and e.g. in Seidel’s [Sei08c] subsequent variation. Our description culminates in a

proof of the fundamental regularity theorem for the moduli spaces we consider.

2.1 Treed disks and decorations

Pseudoholomorphic treed disks 𝑢 : Δ → 𝑋 are continuous maps from decorated

domains Δ which satisfy relations determined by the decorations. We first define the

combinatorial data specifying these domains.

Definition 2.1. A (marked) treed disk Δ consists of:

• A finite collection Vert(Δ)of vertices, each 𝑣 ∈ Vert(Δ)being a point, or a component

homeomorphic to either the complex unit disk D or sphere CP1; hence admitting

a partition

Vert(Δ) = Vert+(Δ) ⊔ Vert•(Δ) ⊔ Vert◦(Δ)

into point, disk, and sphere components respectively.

19
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• A distinguished root vertex 𝑣0 ∈ Vert+(Δ).

• A unique directed edge 𝑒 ∈ Edge(Δ) := Vert(Δ) − {𝑣0} emanating from a point

on each non-root vertex as specified by head and tail maps ℎ, 𝑡 : Edge(Δ) →⊔
Vert(Δ), each with a respective length given by 𝑙 : Edge(Δ) → [0,∞]. In

particular, each head ℎ(𝑒) or tail 𝑡(𝑒) is a point inside another vertex 𝑣 ∈ Vert(Δ).

• A finite family 𝒦 of possible flavors, and for each 𝜅 ∈ 𝒦 a finite collection

Mark𝜅(Δ) = {𝑑𝜅,𝑖} of marked points, each 𝑑𝜅,𝑖 lying in the interior of a sphere or

disk component.

In order that the edges ofΔ give acceptable rules gluing the vertices ofΔ into essentially

a geometrically realized rooted tree, we require that:

(2.1.a) A point 𝑧 of a component 𝑣 ∈ Vert(Δ) which is the either the head or tail of an

edge, or is a marked point, is called a joint. All joints whatever their kind must be

distinct, with the exception that marked points of different flavors may coincide.

(2.1.b) Each point 𝑣+ ∈ Vert+(Δ) is the head or tail of at most one edge in each case. A

point 𝑣+ with valence two is called a breaking. Otherwise 𝑣+ has valence one and

is either the tail of an edge, in which case it is called an input, or else is the head

of an edge, in which case 𝑣+ = 𝑣0 (the root) is the (unique) output. We denote the

number of inputs by 𝑛(Δ).

(2.1.c) There is a unique root edge 𝑒0 with ℎ(𝑒0) = 𝑣0, so that in particular there are at

least two vertices.

(2.1.d) Each edge 𝑒 ∈ Edge(Δ) is infinite if ℎ(𝑒) or 𝑡(𝑒) lies on a point, or otherwise is

combinatorially finite; this gives a decomposition

Edge(Δ) = Edge→(Δ) ⊔ Edge−(Δ)

into infinite and combinatorially finite edges respectively.
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(2.1.e) The unique point of any 𝑣+ ∈ Vert+(Δ) and the boundary points of any disk

component 𝑣• ∈ Vert•(Δ) are said to be of boundary type.

For each edge 𝑒 we have that 𝑡(𝑒) is of boundary type if and only if ℎ(𝑒) is of

boundary type. Moreover if 𝑡(𝑒) ∈ 𝑣 for some 𝑣 ∈ Vert•(Δ), then 𝑡(𝑒) ∈ 𝜕𝑣. This

gives a further refinement

Edge−(Δ) = Edge◦−(Δ) ⊔ Edge𝜕−(Δ)

into the collections of interior and boundary combinatorially finite edges; namely

consisting of those edges 𝑒 for which 𝑡(𝑒) hence ℎ(𝑒) lies in the interior of some

component, or otherwise, respectively.

(2.1.f) The length of each edge 𝑒 ∈ Edge(Δ)must obey the requirement that

𝑙(𝑒) ∈


{∞} 𝑒 ∈ Edge→(Δ)

{0} 𝑒 ∈ Edge◦−(Δ)

[0,∞) 𝑒 ∈ Edge𝜕−(Δ)

.

Remark 2.2. Of course, the head and tail maps respectively descend to a pair of maps

ℎ, 𝑡 : Edge(Δ) → Vert(Δ) which equip Vert(Δ) with the structure of a directed tree

with root 𝑣0. The boundary axiom (2.1.e) prevents the existence of sphere components

when there are no disk components.

In the sequel, it will be convenient to denote by Joint(Δ) the entire set of joints, and

to write Joint∧(Δ) ⊂ Joint(Δ) for the subset consisting of all breakings. For notational

convenience we adopt the convention that a point vertex 𝑣+ ∈ Vert+(Δ) is identified

with the unique point it contains.

The data of a treed disk Δ gives rise in straightforward fashion to, and essentially

decorates, an honest topological space Δ. To build Δ, we associate the line segment
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𝐿𝑒 = [0, 𝑙(𝑒)] to each combinatorially finite edge 𝑒 ∈ Edge−(Δ). Similarly, to each

infinite edge 𝑒 ∈ Edge→(Δ)we associate

𝐿𝑒 =


[−∞, 0] 𝑡(𝑒) ∈ Vert+(Δ) and ℎ(𝑒) ∉ Vert+(Δ)

[ 0,∞] 𝑡(𝑒) ∉ Vert+(Δ) and ℎ(𝑒) ∈ Vert+(Δ)

[−∞,∞] otherwise

,

and write 𝑤−𝑒 and 𝑤+𝑒 for the respective left and right endpoints of 𝐿𝑒 . Of course, all of

these spaces are diffeomorphic, but we understand them as recording a distinguished

parameterization by an interval subset of R.

Now form Δ as the quotient by ∼ of the disjoint union of

⊔
𝑣∈Vert(Δ)

𝑣 and
⊔

𝑒∈Edge(Δ)
𝐿𝑒 ,

where for all 𝑒 ∈ Edge(Δ)we declare 𝑡(𝑒) ∼ 𝑤−𝑒 and ℎ(𝑒) ∼ 𝑤+𝑒 .

Writing 𝑆Δ for the image of the components 𝑣 ∈ Vert•(Δ)∪Vert◦(Δ) in Δ (the surface

part), and 𝑇Δ for the image of the line segments 𝐿𝑒 (the tree part), by construction Δ is

the union 𝑆Δ ∪ 𝑇Δ. Figure 2.1 schematically depicts a representative pair of treed disk

configurations. Note that inclusion of the union of all components into Δ need not be

injective since a zero-length edge will identify points of distinct components, creating

a node, as depicted in Figure 2.1a (for a disk and sphere) and Figure 2.1b (for a pair of

disks).

Definition 2.3. Let Δ,Δ′ be treed disks. A homeomorphism 𝜓 : Δ→ Δ′ is an isomor-

phism of treed disks if

• the map 𝜙|int(𝑆Δ) is a biholomorphism int(𝑆Δ) � int(𝑆Δ′) on the interior of the

surface part,

• the map 𝜙|int(𝑇Δ) is an isometry int(𝑇Δ) � int(𝑇Δ′) on the interior of the tree part,
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(a)

(b)

Figure 2.1: Schematic diagrams of a pair of treed disks.
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and

• the map 𝜓|Mark𝜅(Δ) is a bĳection onto Mark𝜅(Δ′) for each flavor 𝜅 ∈ 𝒦 .

Of course, an isomorphism of treed disks is equivalently the data of an appropriate

identification of each individual 𝑣 ∈ Vert(Δ), 𝐿𝑒 for 𝑒 ∈ Edge(Δ), and joint subject to

compatibility with the head and tail maps, and flavors.

Definition 2.4. An ordered treed disk is a treed disk Δ equipped with an orientation

of each component 𝑣 ∈ Vert(Δ), hence—given the existence of the distinguished root

vertex—an induced ordering of the (boundary) joints lying on each 𝜕𝑣, along with a

choice of ordering of each flavor 𝜅’s corresponding set Mark𝜅(Δ) of interior joints.

An isomorphism of ordered treed disks is an isomorphism of underlying treed

disks which respects orientation and all orderings.

From now on, we will assume that all of our treed disks are ordered.

Definition 2.5. The combinatorial type Γ = Γ(Δ) of a treed disk Δ is an enhancement

of its “underlying tree” as in Remark 2.2; this is the directed tree with vertex set

Vert(Γ) := Vert(Δ) and edge set Edge(Γ) := Edge(Δ), where we interpret 𝑒 ∈ Edge(Γ)
as an edge from the vertex containing 𝑡(𝑒) to the vertex containing ℎ(𝑒). We continue

to decorate the graph Γ with orderings, both of the flavors of marked points and

of the edges incident to each vertex. We also remember the subsets Edge0
−(Δ) and

Edge(0,∞)− (Δ) of Edge−(Δ) consisting of those edges with respective zero and positive

finite lengths.

Remark 2.6. As Charest–Woodward [CW22, Section 4.2] explain, the type Γ(Δ) of a

treed disk is essentially the data of a so-called metric ribbon tree, except that we have

not ordered the entire collection of edges incident on each vertex. Note that in their

approach interior markings are recorded as the attachment points of additional “fake”

infinite edges (so-called interior leaves)—we deviate from this convention here.
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Though it is not our particular focus, for consistency with the setup of [CW22] we

now introduce weights attached to some of the edges in our treed disks. In the sequel

they will be used to produce an explicit strict unit for the 𝐴∞-operations we construct,

via ensuring compatibility of our perturbations with forgetting inputs on-the-nose (an

adaption of the methods of [Gan12, Section 4]).

Definition 2.7. A weighted treed disk is a treed disk Δ equipped with a function

𝜌 : Edge→(Δ) → [0,∞]which assigns edge weights. There is then a subset Edge (Δ) :=

𝜌−1((0,∞)) ⊂ Edge→(Δ) of weighted edges. Unweighted edges 𝑒 ∈ Edge→(Δ) must

either have 𝜌(𝑒) = 0 in which case we call them unforgettable, else 𝜌(𝑒) = ∞ and they

are forgettable edges. In particular there is a decomposition

Edge→(Δ) = Edge (Δ) ⊔ Edge (Δ) ⊔ Edge (Δ)

into unforgettable, weighted, and forgettable edges, respectively.1 Finally, we require

that if ℎ(𝑒) = 𝑡(𝑒′) is the unique point of a breaking then 𝜌(𝑒) = 𝜌(𝑒′).

We correspondingly enhance the combinatorial type Γ = Γ(Δ) of a weighted treed

disk Δ in order to record the “weight class” of each of its edges; we remember each of

the collections Edge (Δ), Edge (Δ), and Edge (Δ) and associate them to Γ.

Definition 2.8. When the root edge 𝑒0 is unweighted, an isomorphism of weighted treed

disks 𝜓 : Δ → Δ′ is simply an isomorphism of treed disks which preserves edge

weights and the collection of weighted edges. If instead 𝑒0 is weighted, then rather

than demanding that 𝜓 preserves weights on-the-nose, we instead require that there

there exists 𝑐 ∈ (0,∞) such that 𝜌(𝜓(𝑒)) = 𝑐 · 𝜌(𝑒) for each 𝑒 ∈ Edge(Δ).

Definition 2.9. A weighted treed disk Δ is stable if both the domain constraints:

1To ease interoperability between texts, we adopt the general convention of [CW22; VWX20] that data
is “fully active” when its corresponding weight function reports 0, and that data “fades out” as its weight
increases until becoming fully disabled at∞.
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• Each sphere component 𝑣 ∈ Vert◦(Δ) contains at least 3 joints.

• Each disk component 𝑣 ∈ Vert•(Δ) contains at least 3 boundary joints, or at least

1 boundary joint and 1 interior joint.

• No point 𝑣+ ∈ Vert+(Δ) is adjacent in the tree to any breaking.

and weight constraints:

• If the root edge 𝑒0 is weighted then there exists at least one weighted input.

• If there are no disk components, hence no sphere components (c.f. Remark 2.2),

then Edge(Δ) = {𝑒0 , 𝑒1}with 𝑒0 unweighted and 𝑒1 weighted.

are satisfied.

2.2 Moduli spaces of treed disks

One of the great advantages of our present setting is that the universal treed disks for

the moduli spaces we will consider are themselves honest treed disks (in contrast to

other cases where it would be necessary to deal with orbifold singularities) [VWX20,

Section 2.2].

Definition 2.10. The universal treed disk of type Γ is the space𝒰Γ consisting of isomor-

phism classes of pairs (Δ, 𝑥)whereΔ is a stable weighted treed disk with combinatorial

type Γ and 𝑥 ∈ Δ is a distinguished point. We write [Δ, 𝑥] for such an isomorphism

class.

Forgetting the distinguished point and retaining only the isomorphism class of Δ

defines a map [Δ, 𝑧] ↦→ [Δ] from 𝒰Γ ontoℳΓ, the moduli space of stable weighted treed

disks of type Γ.
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By construction the moduli spaceℳΓ of isomorphism classes of stable weighted

treed disks of combinatorial type Γ has dimension

dimℳΓ = 𝑛(Γ) − 2 + 2
∑
𝜅∈𝒦

# Mark𝜅(Γ([𝑢])) − # Edge◦−(Γ) − # Joint∧(Γ)

+ # Edge (Γ)︸         ︷︷         ︸
free weighting

parameter

− # Edge0
−(Γ)︸          ︷︷          ︸

no length
parameter

(2.2.I)

whenever 𝑒0 ∈ Edge(Γ) is unweighted. If 𝑒0 ∈ Edge(Γ) is weighted, then the dimension

is two less.

Remark 2.11. These (unweighted) spaces have a natural cell structure closely related

to Stasheff associhedra [CW22], for which orientations may be readily constructed by

hand.

The moduli spacesℳΓ are related by maps Γ′ → Γ induced by degenerations of

the combinatorial type Γ in various senses. In each case, “un-doing” a degeneration

of a weighted treed disk Δ′ of type Γ′ produces a treed disk Δ of type Γ, and a

corresponding map Γ′→ Γ of the edges and vertices of the underlying combinatorial

types in an obvious way (this map is usually surjective). We enumerate these below,

and each is correspondingly depicted in Figure 2.2 or Figure 2.3.

(2.2.a) An edge breaking: Let 𝑒 ∈ Edge(Γ) be an edge with 𝑙(𝑒) ∈ (0,∞). The type Γ′ is

obtained from Γ by deleting the edge 𝑒, creating a new (breaking) vertex 𝑣+ ∈
Vert+(Γ′), and creating two new edges 𝑒in , 𝑒out ∈ Edge(Γ′) defined by 𝑡(𝑒in) = 𝑡(𝑒),
ℎ(𝑒in) = 𝑣+ = 𝑡(𝑒out), and ℎ(𝑒out) = ℎ(𝑒), necessarily with lengths 𝑙(𝑒in) = 𝑙(𝑒out) =
∞.

(2.2.b) A node spawning: Let 𝑒 ∈ Edge(Γ) be an edge with 𝑙(𝑒) ∈ (0,∞). The type Γ′ is

obtained from Γ by declaring 𝑙(𝑒) := 0 (and thereby creating a node).
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(2.2.c) A component bubbling off : Let 𝑣 ∈ Vert•(Γ) ∪ Vert◦(Γ) be a disk or sphere compo-

nent. The type Γ′ is obtained from Γ by creating a new sphere component, or

possibly a disk component if 𝑣 is a disk component, 𝑣′ ∈ Vert•(Γ′)∪Vert◦(Γ′) and

new edge 𝑒 ∈ Edge(Γ′)with 𝑡(𝑒) = 𝑣′, ℎ(𝑒) = 𝑣, and 𝑙(𝑒) = 0.

(2.2.d) An edge becomes forgettable or unforgettable: Let 𝑒 ∈ Edge(Γ) be an edge with

𝜌(𝑒) ∈ (0,∞). The type Γ′ is obtained from Γ by declaring either 𝜌(𝑒) := ∞
(forgettable) or 𝜌(𝑒) := 0 (unforgettable).

(2.2.e) Forgetting an input: Let 𝑣+ ∈ Vert+(Γ) be an input, let 𝑒 ∈ Edge(Γ) be the unique

edge with 𝑡(𝑒) = 𝑣+, and suppose that 𝜌(𝑣+) = ∞. The type Γ′ is obtained from

Γ by deleting 𝑣+ and 𝑒.

After performing the operation (2.2.e) on a type Γ it may be the case that the

resulting type Γ′ is no longer stable. In this case we will replace Γ′ with its stabilization

(Γ′)stab, formed by recursively collapsing unstable sphere or disk components and

breakings (in the sense of Definition 2.9) into their parent wherever this is possible;

whenever edges are collapsed together, their lengths add. The resulting type is again

stable, and there is a map of vertex and edge sets Γ′→ (Γ′)stab. In summary, the result

of forgetting an input of a type Γ and then stabilizing is in general related to the original

type Γ by a cospan (Γ′)stab ← Γ′→ Γ of maps of vertex and edge sets.

Together the operations (2.2.a)–(2.2.e), possibly after stabilizing, generate a partial

order on stable combinatorial types by complexity; we declare (Γ′)stab > Γ whenever

there is an operation with corresponding morphism Γ′ → Γ, and take the transitive

closure.

Remark 2.12. At this point it is also convenient to note a closely related operation, which

has a more algebraic rather than topological flavor; an edge cut.

Let Γ be a combinatorial type with 𝑣+ ∈ Vert+(Γ) a breaking. Partition Vert(Γ)−{𝑣+}
into the subcollections 𝑉𝑣+ and 𝑉−𝑣+ of vertices which according to the orientation of
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(a) 𝑙(𝑒) → ∞
𝑣+

𝑒in

𝑒out

(b) 𝑙(𝑒) → 0 𝑒

Figure 2.2: Schematic diagrams of the enumerated degenerations (2.2.a)-(2.2.b) of
combinatorial types.
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(c)

𝑣 𝑣 𝑣′

𝑒

(d)

𝑣+
𝜌(𝑒) ∈ (0,∞)

(e)

𝑣+
𝜌(𝑒) = 0

Figure 2.3: Schematic diagrams of the enumerated degenerations (2.2.c)-(2.2.e) of
combinatorial types. A distinguished marked point is labeled by a cross.
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Γ are, and are not, children of 𝑣+ respectively. Define types Γ𝑣+ and Γ−𝑣+ by declaring

Vert(Γ𝑣) := {𝑣+}∪𝑉𝑣+ and Vert(Γ−𝑣) := {𝑣+}∪𝑉−𝑣+ , and restricting the head, tail, flavor,

length, and weight maps of the original type Γ in each case. We obtain a surjective

morphism Γ → Γ𝑣 ⊔ Γ−𝑣 which will be fundamental when subsequently considering

the Morse–Fukaya algebra’s composition operations.

The compactificationℳΓ assembles as

ℳΓ =
⋃
Γ≤ Γ′

𝑛(Γ)= 𝑛(Γ′)

ℳΓ′ , (2.2.II)

i.e. as the union of all strata corresponding to types Γ′ of complexity greater than or

equal to that of Γ, and with the same number of inputs. In other words, the union is

taken allowing Γ′ to vary over all types obtained from Γ by applying the operations

(2.2.a)–(2.2.d) and not (2.2.e). This is a finite union; all operations (2.2.a)–(2.2.e) de-

crease dimension as computed by (2.2.I). By the natural extension of Theorem 1.11 to

this setting, there is a Gromov topology on the compactificationℳΓ for which each

inclusionℳΓ′ ↩→ ℳΓ of eachℳΓ′ in (2.2.II) is an embedding. Similarly, there is in

turn a universal treed disk𝒰Γ →ℳΓ which is compatibility topologized.

In order to define a perturbation datum it will be useful to distinguish the surface-

and tree-parts of 𝒰Γ; the (not necessarily disjoint) decomposition Δ = 𝑆Δ ∪ 𝑇Δ gives

rise to subspaces

𝒮Γ =
⋃
[Δ]∈ℳΓ
𝑧∈𝑆Δ

[Δ, 𝑧] and 𝒯Γ =
⋃
[Δ]∈ℳΓ
𝑧∈𝑇Δ

[Δ, 𝑧]

which of course have union𝒰Γ. Once and for all we fix a compact subset 𝒮⊚•
Γ ⊂ 𝒮Γ on

which to perturb the almost complex structure, which has interior meeting (i.e. having

nonempty intersection with) each disk and sphere component, and is disjoint from 𝒯Γ
and 𝜕𝒮Γ. Likewise in order to implement perturbations of the global Morse function
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choose a compact 𝒯 ⊚•
Γ ⊂ 𝒯Γ which has interior meeting the interior of each edge and is

disjoint from a neighborhood of all vertices (points and disk/sphere components).

Remark 2.13. Each degeneration (2.2.a)–(2.2.d) of a combinatorial type Γ into a type

Γ′ > Γ induces a corresponding restriction map of compact moduli spaces: edges

breaking, components bubbling off, nodes or infinite edges spawning, and edges

becoming forgettable/unforgettable each correspond to an inclusion of a boundary

stratumℳΓ′ ↩→ ℳΓ of codimension 1 or 2. The edge cutting operation Γ → Γ𝑣+ ⊔
Γ−𝑣+ of Remark 2.12 similarly gives rise to an isomorphism of moduli spacesℳΓ �

ℳΓ𝑣+ × ℳΓ−𝑣+ . The universal treed disk corresponding decomposes as the union

𝑝∗+𝒰Γ𝑣+ ∪ 𝑝∗−𝒰Γ−𝑣+ of pullbacks along the respective projections 𝑝± ofℳΓ ontoℳΓ𝑣+

andℳΓ−𝑣+ .

If instead Γ′ is obtained from Γ by forgetting an input 𝑒 ∈ Edge(Γ) as in (2.2.e), there

is a projection 𝑝 :ℳΓ →ℳΓ′ fibered over the closed interval parameterizing all possi-

ble positions of ℎ(𝑒) consistent with the order of the input edges of Γ. Correspondingly,

there is an inclusion of the pullback 𝑝∗𝒰Γ′ into𝒰Γ.

2.3 Perturbed pseudoholomorphic maps

In this section fix a Kähler manifold (𝑋, 𝜔, 𝐽) equipped with a (possibly singular)

Lagrangian torus fibration 𝜋 : 𝑋 → 𝑄. Let 𝑄 ⊂ 𝑄 be a compact subset disjoint from

the critical values of 𝜋. We write 𝐹𝑞 := 𝜋−1(𝑞) for each fiber. Given an underlying

treed disk Δ, a pseudoholomorphic treed disk is a particular kind of map 𝑢 : Δ→ 𝑋.

It will not be much use for us to consider ordinary, unperturbed, pseudoholomorphic

treed disks because of transversality issues which obstruct a well-defined theory of

their counts. Instead, we build into their definition a global scheme for making

suitable domain-dependent perturbations of the pseudoholomorphic curve equation

and Morse gradient flow equation. We begin by specifying the perturbation datum to
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be associated to each fixed type.

Definition 2.14. Let Γ be a combinatorial type of weighted treed disks. A perturbation

datum 𝑃Γ for Γ modeled on (𝐽 , 𝑓 ) is a choice of domain-dependent perturbations:

(2.14.a) Of the almost complex structure 𝐽, given by a smooth map

𝐽Γ : 𝒮Γ → 𝒥𝜏(𝑋, 𝜔),

which restricts to 𝐽 on 𝒮Γ − 𝒮⊚•
Γ .

(2.14.b) Of the Morse function 𝑓 , given by a smooth map

𝑓Γ : 𝒯Γ → C∞(𝑋 → R),

which restricts to 𝑓 on 𝒯Γ − 𝒯 ⊚•
Γ,◦.

(2.14.c) Which are each local, satisfying a technical gluing condition which we defer to

Section 2.4 (c.f. Definition 2.42), in which we prove that satisfactory choices of

perturbation data actually exist.

Definition 2.15. Let Γ be a collection of combinatorial types such that Γ ∈ Γ and Γ′ > Γ

implies Γ′ ∈ Γ, and whenever Γ ∈ Γ and 𝑣+ ∈ Vert+(Γ) is a breaking then 𝑃Γ𝑣+ , 𝑃Γ−𝑣+ ∈ Γ.

A family P = {𝑃Γ}Γ∈Γ of perturbation data chosen for each combinatorial type Γ ∈ Γ

is a perturbation system if (recalling the induced maps of moduli spaces of Remark 2.13):

(2.15.a) The family respects degenerations—if Γ′ > Γ and 𝜄 :ℳΓ′ ↩→ℳΓ is the induced

inclusion of a boundary stratum, the restriction 𝑖∗𝑃Γ of 𝑃Γ along 𝜄 is equal to 𝑃Γ′.

(2.15.b) The family respects cuts—if 𝑣+ ∈ Vert+(Γ) is a breaking, the induced edge cut

isomorphismℳΓ �ℳΓ𝑣+ ×ℳΓ−𝑣+ realizes 𝑃Γ as the product 𝑃Γ𝑣+ × 𝑃Γ−𝑣+ .
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(2.15.c) The family contains all lower-dimensional types—if Γ′ is any type with2 𝑛(Γ′) <
𝑛(Γ), or if 𝑛(Γ′) = 𝑛(Γ) and # Mark(Γ′) < # Mark(Γ), then Γ′ ∈ Γ.

Definition 2.16. Let 𝑃Γ = (𝐽Γ , 𝑓Γ) be a perturbation datum for a stable type Γ. A

𝑃Γ-perturbed pseudoholomorphic treed disk is a weighted treed disk Δ along with a

continuous map 𝑢 : Δ→ 𝑋 which:

(2.16.a) Is pseudoholomorphic on the surface part, in that 𝑢 restricts to a map 𝑢 : 𝑆Δ → 𝑋

such that

D𝑧𝑢 ◦ 𝑗𝑧 = 𝐽Γ([Δ, 𝑧])𝑢(𝑧) ◦D𝑧𝑢 for all 𝑧 ∈ int(𝑆Δ)

with 𝑗 the canonical complex structure on 𝑆Δ.

(2.16.b) Is a Morse gradient flow trajectory on the boundary tree part, in that for each

𝑒 ∈ Edge(Δ) with 𝑡(𝑒) (hence ℎ(𝑒), c.f. the boundary axiom (2.1.e)) lying on

a point or the boundary of a disk component and recalling the corresponding

corresponding 𝐿𝑒 ⊂ [−∞,∞], the map 𝑢 restricts along the inclusion 𝜄 : 𝐿𝑒 ↩→ 𝑇Δ

such that

(𝑢 ◦ 𝜄)′(𝑡) = ∇𝑔
𝑢(𝜄(𝑡)) 𝑓Γ([Δ, 𝜄(𝑡)]) for all 𝑡 ∈ int(𝐿𝑒).

(2.16.c) Has each disk boundary constrained to a Lagrangian fiber, in that there is a

function 𝑏𝑢 : 𝜋0(𝜕𝑆Δ − Joint(Δ)) → {𝐹𝑞 : 𝑞 ∈ 𝑄} such that

𝑢(𝑧) ∈ 𝑏𝑢([𝑧]) for all 𝑧 ∈ 𝜕𝑆Δ − Joint(Δ).

Remark 2.17. The connected components of 𝜕𝑆Δ − Joint(Δ) are exactly the boundary

arcs of each disk component of 𝑆Δ as punctured by the respective head and tail points

of the incident edges. Of course, by continuity of 𝑢 : Δ → 𝑋 the map 𝑏𝑢 of (2.16.c)

lifts to a locally constant function defined on all of 𝜕𝑆Δ, i.e. so that the entirety of each

2Recall that 𝑛(Γ) denotes the number of inputs of the type Γ.
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disk boundary is sent by 𝑢 into the same fiber of 𝜋. However, the present somewhat-

redundant formulation will prove convenient in the sequel, when it will be necessary

to extend the collection {𝐹𝑞 : 𝑞 ∈ 𝑄} to contain other Lagrangian submanifolds of 𝑋

(c.f. Definition 4.4).

Remark 2.18. Let 𝑢 : Δ → 𝑋 be a pseudoholomorphic treed disk. As a consequence

of the axioms of a treed disk, if 𝑣◦ ∈ Vert◦(Δ) is a sphere component, upon iteratively

replacing 𝑣◦ with its parent (ℎ)(𝑣◦) we must eventually obtain a disk component

𝑣• ∈ Vert•(Δ). By Remark 2.17, under 𝑢 the component 𝑣• bounded by a unique fiber

𝐹𝑞 ; despite not having any boundary itself, we say that 𝑣◦ is bounded by the same fiber

𝐹𝑞 .

Definition 2.19. A (𝑃Γ-perturbed) pseudoholomorphic treed disk 𝑢 : Δ→ 𝑋 is stable

when

• if 𝑢 is constant on a sphere component 𝑣 ∈ Vert◦(Δ) then 𝑣 contains at least 3

joints,

• if 𝑢 is constant on a disk component 𝑣 ∈ Vert•(Δ) then 𝑣 contains at least 1

boundary joint and 1 interior joint, and

• if 𝑒 ∈ Edge→(Δ) is an infinite edge then 𝑢 is not constant on 𝐿𝑒 .

In order to overcome the multiple-cover problem and stabilize our moduli spaces

of stable pseudoholomorphic treed disks we adapt the scheme of Cieliebak–Mohnke

[CM07] to our setting. The key ingredient is the following theorem, which is our

analogue of [VWX20, Lemma 2.10]—though in the present setting where 𝑋 is Kähler

the result essentially goes back to [Gue99].

Theorem 2.20. Suppose that the class [𝜔] is integral. For each finite collectionℒ = {𝐿𝑖 ⊂ 𝑋}
of rational Lagrangian submanifolds3 of 𝑋 and all 𝑘 ≫ 1 there exists a codimension 2 complex

3A Lagrangian submanifold 𝐿 ⊂ 𝑋 is rational if the class [𝜔] is rational on 𝜋2(𝑋, 𝐿), i.e. [𝜔] ∈
𝐻2(𝑋, 𝐿;Q).
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hypersurface 𝐷 ⊂ 𝑋 disjoint from each 𝐿𝑖 and of degree 𝑘 such that

• every nonconstant holomorphic disk in 𝑋 with boundary contained in
⋃ℒ intersects 𝐷

at least once,

• every nonconstant holomorphic sphere intersects 𝐷 at least three times, and

• the collection ℒ is jointly exact on the complement 𝑋 − 𝐷.

Proof. The proof is an application of Donaldson [Don96] and Auroux–Gayet–Mohsen’s

[AGM01] theory of stabilizing divisors. □

Definition 2.21. A hypersurface 𝐷 satisfying the conclusions of Theorem 2.20 for the

family ℒ = {𝐿𝑖} is called a stabilizing divisor for ℒ.

Corollary 2.22. Let 𝐷 be a stabilizing divisor for the familyℒ furnished by Theorem 2.20. If

𝐹𝑞 ∈ ℒ for some 𝑞 ∈ 𝑄 then there exists an open neighborhood 𝑈𝑞 ⊂ 𝑄 of 𝑞 such that 𝐷 is

also a stabilizing divisor for 𝐹𝑝 for all 𝑝 ∈ 𝑈𝑞 .

Proof. By compactness of 𝑋 we may find a neighborhood 𝑈𝑞 ⊂ 𝑄 small enough that,

for all 𝑝 ∈ 𝑈𝑞 , the divisor 𝐷 is disjoint from all 𝐹𝑝 and the fibers 𝐹𝑝 and 𝐹𝑞 are isotopic

by some isotopy 𝜓𝑝 avoiding 𝐷. Now, given 𝑢 : D → 𝑋 any holomorphic disk in 𝑋

with boundary on 𝐹𝑝 for some 𝑝 ∈ 𝑈𝑞 , the boundary 𝑢(𝜕D) ⊂ 𝐹𝑝 is isotopic via 𝜓𝑝 to

a subset of 𝐹𝑞 . This yields a (no longer holomorphic) map 𝑢′ : D→ 𝑋 bounded by 𝐹𝑞 ;

suitably further restricting 𝑈𝑞 we may ensure that all such maps 𝑢′ obtained from this

process have positive symplectic area. Therefore the intersection number of 𝑢′ (hence

𝑢) with 𝐷 is positive, i.e. 𝑢 meets 𝐷 in at least one point. □

Remark 2.23. In the sequel we will find that it is undesirable that, in the setup of

Corollary 2.22, there may exist nonconstant pseudoholomorphic spheres 𝑢 which

meet the divisor 𝐷 in infinitely many places; namely, 𝑢 may be contained in 𝐷. In

order to prohibit this, we make the following compromise: suppose that finitely many
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families ℒ𝜅 and corresponding respective stabilizing divisors 𝐷𝜅 have been chosen.

Then we may deform the complex structure on 𝑋 into an almost complex structure 𝐽0

for which the each 𝐷𝜅 is still stabilizing, is now a 𝐽0-holomorphic hypersurface, and is

regular for the moduli space of simple 𝐽0-spheres. If the hypersurface 𝐷𝜅 satisfy an a

priori minimum bound on their degree, the expected dimension of the moduli space

of such 𝐽0-spheres in each 𝐷𝜅 is negative, and therefore each such space is empty.

Definition 2.24. A system of stabilizing divisors for 𝜋 : 𝑋 → 𝑄 is a family of divisors

D = {𝐷𝜅 ⊂ 𝑋}, equipped with activity functions 𝛼𝜅 : 𝑄 → [0,∞] such that:

(2.24.a) Each divisor 𝐷𝜅 is a stabilizing divisor for all Lagrangian fibers 𝐹𝑞 with 𝑞 ∈
𝛼−1
𝜅 ([0,∞)).

(2.24.b) For each 𝑞 ∈ 𝑄 there is at least one 𝐷𝜅 such that 𝛼𝜅(𝑞) < 1 and there are only

finitely many divisors 𝐷𝜅′ such that 𝛼𝜅′(𝑞) < ∞.

Theorem 2.25. There exists a system of stabilizing divisors for 𝜋 : 𝑋 → 𝑄.

Proof. By Corollary 2.22, for each fiber 𝐹𝑞 of 𝜋 : 𝑋 → 𝑄 there exists an open neigh-

borhood 𝑈𝑞 ⊂ 𝑄 of 𝑞 and divisor 𝐷𝑞 ⊂ 𝑋 such that 𝐷𝑞 is stabilizing for each 𝐹𝑞′

with 𝑞′ ∈ 𝑈𝑞 . For each 𝑞 ∈ 𝑄 choose a smooth function 𝛼𝑞 : 𝑄 → [0,∞] such that

𝛼𝑞(𝑞) = 0 and 𝛼𝑞|𝑄−𝑈𝑞 = ∞ identically. There is a finite subset 𝑆 ⊂ 𝑄 such that

{𝛼−1
𝑞 ([0,∞)) : 𝑞 ∈ 𝑆} covers 𝑄.

Let 𝜂𝑅(𝑡) : R×[0,∞] → [0,∞] be a smooth family of monotone reparameterizations

of [0,∞] such that 𝜂𝑅(∞) = ∞ and 𝜂𝑅|[0,𝑅] = 0 identically. For 𝑅 > 0 sufficiently large

it must be the case that the set of divisors {𝐷𝑞 : 𝑞 ∈ 𝑆} equipped with the respective

activity functions 𝛼𝑞 ◦ 𝜂𝑅 have the desired properties. □

Henceforth, once we have fixed a system of stabilizing divisors D and an almost

complex structure 𝐽0 as in Remark 2.23, we will set 𝒦 := {𝜅 : 𝐷𝜅 ∈ D} as the universe

of all possible flavors. In addition, it will be desirable to equip marked points of our
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pseudoholomorphic treed disks with multiplicity labels, so that 𝑑𝜅,𝑖 ∈ Mark𝜅(Δ)meets

𝐷𝜅 with multiplicity 𝑚𝑑𝜅,𝑖 ∈ N≥1.

We are about to specify the classes of pseudoholomorphic treed disks which we

actually intend to count. It is necessary to impose constraints to both stabilize the treed

disks and to enforce correct boundary conditions. We handle each of these in turn;

first, it will be convenient to restrict our considerations to a class of Morse functions

on 𝑋 which are particularly compatible with the fibration 𝜋 : 𝑋 → 𝑄.

Definition 2.26. A Morse function 𝑓 : 𝑋 → R is a perfect lift of a Morse function
q𝑓 : 𝑄 → R if

• we have 𝜋(crit 𝑓 ) = crit q𝑓 , and

• for all 𝑞 ∈ crit q𝑓 we have that the gradient flow of 𝑓 is tangent to all points of 𝐹𝑞

and 𝑓 restricted to 𝐹𝑞 is perfect4.

A perfect lift 𝑓 of any Morse function q𝑓 : 𝑄 → R exists by lifting q𝑓 to 𝑋 on-the-nose

and then locally making small perturbations.

Each Morse function q𝑓 determines a cellular decomposition of 𝑄, for which each

𝑞 ∈ crit𝑘 q𝑓 corresponds to the unique (dim𝑄 − 𝑘)-cell equal to the ascending manifold

𝑊↑(𝑞).

Definition 2.27. A polyhedral cover Θ of 𝑄 is confining for a perfect lift 𝑓 of a Morse

function q𝑓 : 𝑄 → R if each 𝑞 ∈ crit𝑘 q𝑓 corresponds to a unique 𝜃𝑞 ∈ Θ containing the

star of the cell 𝑊↑(𝑞) in the cellular decomposition induced by q𝑓 .

Figure 2.4 depicts Morse flow trajectories in 𝑄 superimposed onto a confining

polyhedral cover of 𝑄.

Definition 2.28. Let D be a system of divisors and let 𝑓 be a perfect lift of a Morse

function q𝑓 : 𝑄 → R. For each 𝜃 ∈ Θ let D|𝜃 ⊂ D be the subset consisting of all divisors
4A Morse function is perfect if it induces a minimal Morse model—in this case, of each 𝑛-torus fiber.

Equivalently, the Morse differential 𝜕 is zero on the entire Morse complex.
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Figure 2.4: A representative diagram depicting the Morse flow trajectories for q𝑓 in 𝑄,
along with an indicative cell of a confining polyhedral cover.
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𝐷𝜅 for which there exists some 𝑞 ∈ 𝜃 such that 𝛼𝜅(𝑞) < ∞. We call a system of divisors

D and perfect lift 𝑓 compatible if for all 𝜃 ∈ Θ and 𝐷𝜅 ∈ D|𝜃 the divisor 𝐷𝜅 is stabilizing

for each 𝑞 ∈ 𝜃.

The collections D|𝜃 ⊂ D record the divisors which are active somewhere in 𝜃.

Compatibility (as in Definition 2.28) in particular ensures for us that it is safe to

track all points at which a pseudoholomorphic treed disk component in 𝜃 meets each

𝐷𝜅 ∈ D|𝜃, in the sense that (ignoring constant components) the number of intersection

points with 𝐷𝜅 is necessarily finite.

Henceforth we fix a particular perfect lift 𝑓 of a Morse function q𝑓 on 𝑄, with q𝑓

chosen to be outward transverse to the boundary of 𝑄, equipped with a corresponding

confining polyhedral cover Θ of 𝑄. We will assume that the systems of divisors D we

consider are always compatible with 𝑓 .

Definition 2.29. A (𝑃Γ-perturbed) pseudoholomorphic treed disk 𝑢 : Δ→ 𝑋 is adapted

to a system of divisors D = {𝐷𝜅} compatible with 𝑓 if, whenever 𝑣 ∈ Vert•(Δ)∪Vert◦(Δ)
is a component bounded (in the sense of Remark 2.18) by a fiber lying over some 𝜃 ∈ Θ,

we have that Mark𝜅(Δ) ∩ 𝑣 intersects each connected component of 𝑢|−1
𝑣 (𝐷𝜅) for all

𝐷𝜅 ∈ D|𝜃.

Remark 2.30. In Definition 2.29 we, roughly speaking, record all intersection points of

a disk or sphere component bounded by a fiber 𝐹𝑞 with all divisors active anywhere

in any cell 𝜃 ∈ Θ containing 𝑞. This is a convenient bookkeeping device; however, in

order to achieve stability of our treed disks and coherent perturbations it is actually

only necessary to record intersections with divisors 𝐷𝜅 having 𝛼𝜅(𝑞) < ∞.

In this equivalent formulation, we would declare two pseudoholomorphic treed

disks 𝑢, 𝑢′ : Δ→ 𝑋 adapted to D equivalent whenever they become isomorphic upon

deleting all marked points 𝑑 ∈ Mark(𝜅,𝑚)(Δ) with 𝛼𝜅(𝜋(𝑑)) = ∞ (i.e. wherever the

underlying divisor is disabled).
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Modulo a technical modification the valid possible input or output points of pseu-

doholomorphic treed disks—which will be promoted to generators of the Morse–

Fukaya algebra subsequently—are the critical points of the global Morse function

𝑓 . More precisely, write 𝑥m,𝑖 ∈ 𝑋 for the 𝑖th minimum of 𝑓 under a fixed choice of

ordering. For each such critical point let 𝑥m,𝑖 and 𝑥m,𝑖 be a pair of additional formal gen-

erators, and correspondingly extend the definition of index by declaring 𝐼(𝑥m,𝑖) = −1

and 𝐼(𝑥m,𝑖) = 0. Now define the set of generators

gen 𝑓 := crit 𝑓 ⊔
⋃
𝑖

{𝑥m,𝑖 , 𝑥m,𝑖}. (2.3.I)

These formal generators will be used to implement a strict unit for the Morse–Fukaya

algebra, with each formal generator 𝑥m,𝑖 of index−1 witnessing the homological equal-

ity of 𝑥m,𝑖 and 𝑥m,𝑖 (c.f. Theorem 3.12).

Definition 2.31. Let Γ be a combinatorial type with 1 output and 𝑛 inputs, with marked

points labeled with flavors determined by a system of divisors D = (𝐷𝜅)𝜅∈𝒦 . Recall

that by construction the inputs 𝑣𝑖 ∈ Vert+(Γ) are canonically ordered, that there is a

the root edge 𝑒0 with ℎ(𝑒0) = 𝑣0, and that for each 𝑖 > 0 there is a unique 𝑒𝑖 ∈ Edge(Γ)
such that 𝑡(𝑒𝑖) = 𝑣𝑖 .

A pseudoholomorphic treed disk spec(ification) for the type Γ is a choice of tuple

(m, x, 𝜷) consisting of:

• Multiplicity labels m = (𝑚𝜅,𝑑 ∈ N≥1)𝜅∈𝒦 ,𝑑∈Mark𝜅(Δ).

• Input/output labels x = (𝑥𝑖 ∈ gen 𝑓 )0≤𝑖≤𝑛 satisfying

𝑥𝑖 ∈


crit 𝑓 𝜌(𝑒𝑖) = 0

{𝑥m} 𝜌(𝑒𝑖) ∈ (0,∞)

{𝑥m} 𝜌(𝑒𝑖) = ∞

.
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• Boundary classes 𝜷 = (𝛽𝑣)𝑣∈Vert•(Δ)∪Vert◦(Δ) satisfying5

𝛽𝑣 ∈

𝐻2(𝑋,

⋃
𝑏𝑢(𝑣)) 𝑣 ∈ Vert•(Δ)

𝐻2(𝑋) 𝑣 ∈ Vert◦(Δ)
.

A pseudoholomorphic treed disk 𝑢 : Δ→ 𝑋 with Γ = Γ(Δ) and adapted to D obeys

the spec (m, x, 𝜷) if:

• For each 𝜅 ∈ 𝒦 and 𝑑 ∈ Mark𝜅(Δ), if 𝑢(𝑑) does not lie on a constant component

then 𝑢(𝑑)meets 𝐷𝜅 with order of tangency 𝑚𝜅,𝑑.

• For the unique output 𝑣0 ∈ Δ and inputs 𝑣𝑖 ∈ Δ we have 𝑢(𝑣𝑖) = 𝑥𝑖 for all

0 ≤ 𝑖 ≤ 𝑛.

• For each component 𝑣 ∈ Vert•(Δ) ∪ Vert◦(Δ) we have that 𝑢|𝑣 represents the

homology class 𝛽𝑣 .

Definition 2.32. Given a combinatorial type Γ labeled by a background system of

divisors D, fix a perturbation datum 𝑃Γ. For each spec (m, x, 𝜷) we may form the

moduli spaceℳ𝑃Γ(m, x, 𝜷) of stable 𝑃Γ-perturbed pseudoholomorphic treed disks with domain

combinatorial type Γ of spec (m, x, 𝜷).

The expected dimension of ℳ𝑃Γ(m, x, 𝜷) is computed in (2.4.II) via a Fredholm

index formula. Substituting the (essentially combinatorial) domain dimension for-

mula (2.2.I), and recalling the Morse and Maslov indices and first Chern numbers of

5Recall the locally constant function 𝑏𝑢 of (2.16.c). As above, this formulation is currently somewhat
redundant in that the union

⋃
𝑏𝑢(𝑣) must be equal to the unique fiber 𝐹𝑞 such that 𝑢(𝜕𝑣) = {𝑞}. When

the function 𝑏𝑢 is permitted to take values in other Lagrangian submanifolds of 𝑋 in Chapter 4 this will
no longer be the case.
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Chapter 1, we arrive at the expected dimension

dimℳΓ(m, x, 𝜷) = 𝐼(𝑥0) −
𝑛∑
𝑖=1

𝐼(𝑥𝑖) +
∑

𝑣∈Vert•(Γ)
𝐼(𝛽𝑣) + 2

∑
𝑣∈Vert◦(Γ)

𝑐1(𝛽𝑣)

+ 𝑛(Γ) − 2 − 2
∑

𝑑∈Mark𝜅(Γ)
(𝑚𝜅,𝑑 − 1)

− # Edge◦−(Γ) − # Joint∧(Γ) − # Edge0
−(Γ) (2.3.II)

whenever the root edge 𝑒0 ∈ Γ is unweighted. When 𝑒0 is weighted, the dimension

dimℳΓ(m, x, 𝜷) is two less.

2.4 Regularization and uncrowding

In this section we define the specific class of perturbation systems which enjoy all of

the necessary technical properties required to successfully construct the Morse–Fukaya

algebra, and then prove that they exist and are plentiful.

Before handling the requisite functional analysis, we must first overcome a general

technical problem which arises in our approach (adapting the methods of [CW22] and

as originally formulated in [CM07]) when a pseudoholomorphic treed disk 𝑢 : Δ→ 𝑋

meets a particular stabilizing divisor 𝐷𝜅 at a component 𝑣◦ ∈ Vert•(Δ) on which 𝑢 is

constant; according to Definition 2.19 the map 𝑢 may be stable with an arbitrarily large

number of marked points 𝑑𝜅,𝑖 ∈ Mark𝜅(Δ) labeling 𝑣◦ or adjacent constant components.

Supposing that it were possible to stabilize such configurations the expected dimension

formula (2.4.II) we will shortly obtain could not hold, since if Δ′ is a (stable) treed disk

obtained from Δ by replacing a marked point with a constant sphere component

stabilized by the creation of two additional marked points, then Δ = Δ′ and the same

underlying map 𝑢 defines a pseudoholomorphic treed disk Δ′ → 𝑋 belonging to a

moduli space with a strictly lower expected dimension.

Thus, we must delineate the combinatorial types which Cieliebak–Mohnke pertur-
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bation theory may treat directly.

Definition 2.33. A maximal ghost sphere tree in a pseudoholomorphic treed disk 𝑢 :

Δ→ 𝑋 is a maximal connected subtree of Γ(Δ) with vertices 𝐺 = {𝑣◦𝑖 } ⊂ Vert◦(Δ) for

which each restriction 𝑢|𝑣◦𝑖 is constant. Observe that if 𝑢 has spec (m, x, 𝜷) then 𝑢|𝑣◦𝑖 is

constant if and only if 𝛽𝑣◦𝑖 = 0.

A stable pseudoholomorphic treed disk 𝑢 : Δ → 𝑋 of spec (m, x, 𝜷) is crowded if,

for any active flavor 𝜅, we have that

(2.33.a) the vertices of any maximal ghost sphere tree 𝐺 ⊂ Vert◦(Δ) together contain in

total more than a single marked point 𝑑𝜅,𝑖 ∈ Mark𝜅(Δ), or

(2.33.b) we have 𝑚𝑑𝜅,𝑖 > 2 for any 𝑑𝜅,𝑖 ∈ Mark𝜅(Δ).

Similarly, we will say that a spec (m, x, 𝜷) for the typeΓ is crowded if pseudoholomorphic

treed disks of spec (m, x, 𝜷) are crowded. Observe that since the set of active divisors is

determined by the critical points x, crowdedness of (m, x, 𝜷) is determined completely

by combinatorial information and labels.

Remark 2.34. The requirement (2.33.b) prohibits entirely legitimate configurations

which are not degenerate on a constant component in the sense of their combina-

torial decorations. Nonetheless, in practice we will only need to consider moduli

spaces of expected dimension 0 or 1, and their exclusion simplifies our subsequent

arguments.

In order to define the class of perturbations which enjoy all properties necessary

to construct a suitable theory of Floer operations, we introduce one final compatibility

condition between the chosen divisors and candidate perturbations of the underlying

almost complex structure. Essentially, the requirement is that the energy continues

to sufficiently-well control pseudoholomorphic spheres for the prescribed perturbed

almost complex structures.
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Definition 2.35. Let Γ be a combinatorial type. Consider the relation on the vertices

of Γ generated defined by declaring 𝑡(𝑒) ∼ ℎ(𝑒)whenever an edge 𝑒 ∈ Edge(Γ)

• is an edge of length 0 (necessarily between components of Γ), or

• is an edge of length ∞ with ℎ(𝑒) a component (necessarily the vertex 𝑡(𝑒) is a

point).

This relation partitions Γ into finitely many subtrees Γ𝑖 called the maximal nodal trees

of Γ.

Each component 𝑣 ∈ Vert•(Γ) ∪ Vert◦(Γ) is contained in a unique maximal nodal

tree Γ(𝑣) = Γ𝑖 . If Δ is a treed disk then similarly there is a canonical decomposition

Δ =
⋃

𝑖 Δ𝑖 (with Γ(Δ𝑖) = Γ𝑖 for each 𝑖), and we denote by Δ(𝑣) the treed disk in this

union with combinatorial type Γ(𝑣).

If 𝑢 : Δ→ 𝑋 is a pseudoholomorphic treed disk then, since under 𝑢 the maximal

nodal trees Δ𝑖 of Δ are connected by Morse gradient flow trajectories, the image of

each restriction 𝑢|𝜕𝑆Δ𝑖 lies wholly in a polyhedron 𝜃𝑢,Δ𝑖 ∈ Θ. Then by definition each

divisor 𝐷𝜅 ∈ D|𝜃𝑢,Δ𝑖
is stabilizing for the fiber bounding 𝑢|𝜕𝑆Δ𝑖 .

Definition 2.36. The energy 𝜔(𝑢) of a 𝑃Γ-perturbed pseudoholomorphic treed disk

𝑢 : Δ→ 𝑋 is the sum of the energies of its components, i.e.

𝜔(𝑢) :=
∑

𝑣∈Vert•(Δ)∪Vert◦(Δ)

∫
𝑣
𝑢∗𝜔.

Lemma 2.37. Let 𝑢 : Δ → 𝑋 be a 𝑃Γ-perturbed pseudoholomorphic treed disk, with D =

{𝐷𝜅}𝜅∈𝒦 a background system of stabilizing divisors. Decompose Δ into maximal nodal trees

Δ𝑖 , and write 𝑙𝜅 ∈ N for the degree of 𝐷𝜅. We define

𝐸(𝑢) :=
∑
𝑖

min
𝐷𝜅∈D|𝜎𝑢,Δ𝑖

# Mark𝜅(Γ(Δ𝑖)) + 1
𝑙𝜅

. (2.4.I)
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Each 𝑃Γ-perturbed pseudoholomorphic treed disk 𝑢 : Δ→ 𝑋 obeys

𝜔(𝑢) ≤ 𝐸(𝑢).

Proof. This lemma is the family version of [CW22, Proposition 4.19]; the claim follows

in the case of a single divisor since each 𝐷𝜅 provided by Theorem 2.20 is exact away

from 𝜃𝑢,Δ𝑖 ∈ Θ. □

Definition 2.38. Let𝐸 > 0. An almost complex structure 𝐽′ is𝐸-stabilizing if, whenever

𝑢 : CP1 → 𝑋 is a nonconstant 𝐽′-pseudoholomorphic sphere and 𝐸(𝑢) ≤ 𝐸 then 𝑢

intersects each active divisor 𝐷𝜅 at least three and at most finitely many points.

A perturbation datum 𝑃Γ is compatible with the system of stabilizing divisors D if

for all [Δ, 𝑧] ∈ 𝒰Γ, whenever 𝑧 ∈ Δ(𝑣)we have that 𝐽Γ([Δ, 𝑧]) is 𝐸(Γ(𝑣))-stabilizing.

The following lemma ensures that the space of almost complex structures yielding

compatible perturbation data is plentiful.

Lemma 2.39 ([VWX20, Lemma 2.17]). For each 𝐸 > 0 there exists an open neighborhood

of the ambient almost complex structure 𝐽0 (of Remark 2.23) with respect to the 𝐶∞-topology

consisting of almost complex structures 𝐽′ which are 𝐸-stabilizing.

Remark 2.40. In fact, there is a comeager set of almost complex structures which possess

the property of Lemma 2.39 for all 𝐸 > 0 simultaneously. The purpose of Lemma 2.39

is to guarantee for us a good space of compatible perturbation data (c.f. Definition 2.38)

nearby 𝐽0 in which we may perturb (this space ultimately then being realized as a finite

intersection of open neighborhoods of the point 𝐽0 in the Banach manifold of possible

choices).

Finally, before stating the characterization of consistent systems of perturbation

data that we require, we introduce the operation which enables us to handle crowded

types.
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Definition 2.41. Let Γ be a (possibly crowded) stable combinatorial type, and let

𝐺 ⊂ Vert◦(Γ) be a subset of sphere components which together are the vertices of a

connected subtree of Γ. The uncrowding Γ𝐺 of Γ at 𝐺 is the (possibly still crowded)

stable combinatorial type obtained by deleting all marked points of
⋃

𝐺 except for the

unique greatest marked point of each flavor 𝜅 and then stabilizing.

Uncrowding at 𝐺 induces a map of universal curves𝒰Γ →𝒰Γ𝐺 , and if (m, x, 𝜷) is
a spec of type Γ then there is a corresponding spec (m, x, 𝜷)𝐺 of type Γ𝐺.

Definition 2.42. A perturbation datum 𝑃Γ is local if the domain-dependent choices

(𝐽Γ , 𝑓Γ) of perturbed almost complex structure and Morse function both factor through

all maps 𝒰Γ → 𝒰Γ𝐺 induced by uncrowding. Local perturbation data of type Γ and

of type Γ𝐺 are therefore in canonical correspondence.

Recall that by condition (2.14.c) all of our perturbation data is local.

Definition 2.43. A perturbation system P = {𝑃Γ}Γ∈Γ works if:

• For each spec (m, x, 𝜷) of type Γ ∈ Γ we have that the moduli spaceℳ𝑃Γ(m, x, 𝜷)
equipped with its natural topology is a smooth manifold.

• For each uncrowding Γ𝐺 of Γ ∈ Γ with 𝐺 ⊂ Edge◦(Δ) contained within some

maximal ghost sphere tree in 𝑢 we have Γ𝐺 ∈ Γ and the perturbation datum 𝑃Γ𝐺

is induced by 𝑃Γ (in the sense of Definition 2.42).

• Each perturbation datum 𝑃Γ is compatible with D.6

Ultimately, we will establish the existence of working perturbation systems by ap-

peal to the Sard–Smale theorem for (separable, infinite-dimensional) Banach manifolds

(c.f. Theorem 1.8)—a variation of an argument tracing its way back to [Flo88]. We

will exhibit a functional-analytic framework in which to encode the pseudoholomor-

phic/Morse gradient flow constraints, and the natural way to achieve this is to equip a
6This last condition yields compactness of the moduli spaces of expected dimension zero, see Theo-

rem 3.8 below.
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suitable Banach vector bundle with a section which measures their failure. However,

we will see from the proof of the main result Theorem 2.45 that the space of possible

solutions is plentiful and no sharp choice of functional-analytic parameters (e.g. de-

termining the Sobolev class to which each belongs or other auxiliary constraints) is

necessary. The picture will become only slightly more complicated in Chapter 4 (c.f.

Section 82 4.2), in which we will be required to introduce some more exotic function

spaces.

First, we produce a space of perturbation systems which are suitably small pertur-

bations of the background data: given a background tame almost complex structure

𝐽0 ∈ 𝒥𝜏(𝑋, 𝜔) and Morse function 𝑓 ∈ 𝐶∞(𝑋 → R) by Lemma 5.1 of [Flo88] there exist

norms on neighborhoods of 𝐽0 and 𝑓 respectively, so that in the space of all compatible

perturbation data 𝑃Γ modeled on (𝐽0 , 𝑓 ) the subset

𝒫Γ = {(𝐽Γ , 𝑓Γ) : ∥𝐽Γ − 𝐽0∥ + ∥ 𝑓Γ − 𝑓 ∥ < ∞}

is a separable Banach manifold [VWX20].

Definition 2.44. Let Γ be a combinatorial type and suppose that P = {𝑃Γ′}Γ′∈Γ′ is

a perturbation system. Denote by 𝒫Γ(P) the subset of 𝒫Γ containing all 𝑃Γ such that

{𝑃Γ}∪P is again a perturbation system. In other words,𝒫Γ(P) is the space of extensions

(inside 𝒫Γ) of P over the combinatorial type Γ; viewing elements of 𝒫Γ(P) this way,

there is also a subset 𝒫✓Γ (P) ⊂ 𝒫Γ(P) of working perturbation systems.

The central object we consider is the dependent product of the space of perturbation

data of fixed type with the moduli space of perturbed pseudoholomorphic treed disks

respectively determined by each datum; this is the universal moduli space of possible

choices

ℳΓ(m, x, 𝜷) :=
{
(𝑃Γ , [𝑢]) : 𝑃Γ ∈ 𝒫Γ , [𝑢] ∈ ℳ𝑃Γ(m, x, 𝜷)

}
.

Locally, each point [Δ, 𝑧] ∈ 𝒰Γ of the universal treed disk is contained in a trivial
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neighborhood 𝒰Γ,Δ � ℳΓ,Δ × Δ for someℳΓ,Δ ⊂ ℳΓ. The universal moduli space

restricts along this local piece yielding a subspaceℳΓ,Δ(m, x, 𝜷) which consists of all

(𝑃Γ , [𝑢 : Δ′→ 𝑋]) for which [Δ′] ∈ ℳΓ,Δ. It will be convenient for us to work on these

local pieces.

Thus consider the space MapΔ(m, x, 𝜷) of all continuous maps 𝑢 : Δ→ 𝑋 such that

𝑢 has spec (m, x, 𝜷) in the sense of Definition 2.31 and obeys (2.16.c) (but nonetheless

need not obey the pseudoholomorphic or Morse gradient flow equations (2.16.a) and

(2.16.b)). Denote by Map𝑘,𝑝
Δ (m, x, 𝜷) the subspace consisting of those maps of Sobolev

class 𝑊 𝑘,𝑝 . This latter space is a Banach manifold, with local charts furnished (as in

[CW22]) by the geodesic exponential map for a metric on 𝑋 for which the fibers of

𝜋 : 𝑋 → 𝑄 are totally geodesic. We will also need the weak space 𝒫 𝑙
Γ of perturbations

of type Γ for which each 𝑃Γ ∈ 𝒫 𝑙
Γ is exactly as in Definition 2.14 with the exception that

smoothness of data is relaxed to the requirement that it is of class 𝐶 𝑙 . Similarly, we

have a weak moduli space of choices

ℳ𝑙 ,𝑘,𝑝
Γ (m, x, 𝜷) =

{
(𝑃Γ , [𝑢]) : 𝑃Γ ∈ 𝒫 𝑙

Γ , [𝑢] ∈ ℳ𝑘,𝑝
𝑃Γ
(m, x, 𝜷)

}
,

for which trivialization of 𝒰Γ over ℳΓ,Δ yields that a local piece decomposes as a

subspace of a product

ℳ𝑙 ,𝑘,𝑝
Γ,Δ (m, x, 𝜷) ⊂ ℬ 𝑙 ,𝑘−1,𝑝

Γ,Δ (m, x, 𝜷) := 𝒫 𝑙
Γ ×ℳΓ,Δ ×Map𝑘,𝑝

Δ (m, x, 𝜷).

Implicitly restricting to the interior of the surface part 𝑆Δ, as in Theorem 1.10 the

operator 𝑑𝑆 = 𝐷 − 𝐽Γ ◦ 𝐷 ◦ 𝑗 measures the failure of 𝑢 : Δ → 𝑋 to be 𝑃Γ-perturbed

pseudoholomorphic, and lifts to an operator onℬ 𝑙 ,𝑘−1,𝑝
Γ,Δ (m, x, 𝜷)naturally taking values

in 𝑢|∗int(𝑆Δ)T𝑋-valued (0, 1)-forms on int(𝑆Δ) of class𝑊 𝑘−1,𝑝 . Similarly, on the interior of

the tree part 𝑇Δ the operator 𝑑𝑡 = d
d𝑡 −∇ 𝑓 measures failure of the Morse gradient flow

equation, and is valued in 𝑢|∗int(𝑇Δ)T𝑋-valued 1-forms on int(𝑇Δ) again of class 𝑊 𝑘−1,𝑝 .
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The direct sum 𝑑𝑆 ⊕ 𝑑𝑇 is then a section of the 𝐶𝑞-Banach vector bundle (whenever

𝑞 < 𝑙 − 𝑘)

ℰ 𝑙 ,𝑘,𝑝
Γ,Δ (m, x, 𝜷) → ℬ 𝑙 ,𝑘−1,𝑝

Γ,Δ (m, x, 𝜷),

namely that subbundle consisting of all pairs of forms 𝜃𝑆 ⊕ 𝜃𝑇 with 𝜃𝑆 having a

multiplicity 𝑚𝜅,𝑑 − 1 zero at each 𝑑 ∈ Mark𝜅(Δ) ↩→ Δ.

In the setting of uncrowded pseudoholomorphic treed disks 𝑢 : Δ → 𝑋 of spec

(m, x, 𝜷), the linearization 𝐷𝑢 of 𝑑𝑆 ⊕ 𝑑𝑇 is Fredholm, of index

ind𝐷𝑢 = dimℳΓ − 𝐼(𝑥0) +
𝑛∑
𝑖=1

𝐼(𝑥𝑖) +
∑

𝑣∈Vert•(Δ)
𝐼(𝛽𝑣) + 2

∑
𝑣∈Vert◦(Δ)

𝑐1(𝛽𝑣)

− 2
∑
𝜅∈𝒦

𝑑∈Mark𝜅(Δ)

𝑚𝜅,𝑑 − # Edge (Γ). (2.4.II)

The expected dimension formula (2.3.II) follows.

The following theorem of standard type encapsulates the necessary functional

analysis required to obtain transversality.

Theorem 2.45 (Generic transversality). For each combinatorial type Γ and working pertur-

bation system P the subset 𝒫✓Γ (P) ⊂ 𝒫Γ (P) is comeager.

Before proving Theorem 2.45, let us establish its key immediate consequence.

Corollary 2.46. There exists a complete working perturbation system P.

Proof. We construct P inductively. The only difficulty is that while all boundary com-

patibility constraints between choices of 𝑃Γ and 𝑃Γ′ are recorded by the order relation

Γ′ > Γ on combinatorial types, this order is far from total. Thus repeatedly making

naïve choices from the collections 𝒫✓Γ (P) may eventually result in a contradiction (i.e.

𝒫Γ(P)may become empty at some stage).

The straightforward trick is to observe that all types Γ have a unique minimal

Γsimp ≤ Γ such that Vert•(Γsimp) = Vert•(Γ)—therefore identical collections of marked
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points on all disk vertices—and that a choice of 𝑃Γsimp determines a compatible choice

of 𝑃Γ. Assuming that perturbation data 𝑃Γsimp have been compatibly chosen for all

(Γ′)simp < Γsimp the space 𝒫
Γsimp(P) is never empty and we may choose a working

perturbation system 𝑃Γsimp ∈ 𝒫✓
Γsimp(P) by Theorem 2.45. Repeating this process for all

minimal combinatorial types Γsimp according to the order relation < yields the desired

complete system P. □

Proof of Theorem 2.45. First observe that if Γ is a crowded type then, under the corre-

spondence of local perturbation data for uncrowdings (c.f. Definition 2.42), the set

𝒫✓Γ (P) is the intersection of 𝒫✓Γ𝐺 (P) over all (finitely many) possible uncrowdings Γ𝐺 of

𝐺. Therefore we may assume that the type Γ is uncrowded.

In this case, by the Sard–Smale Theorem 1.8, it in turn suffices to show that the

linearization of the section 𝑑𝑆 ⊕ 𝑑𝑇 is surjective everywhere on its zero locus. Thus let

𝜂𝑆 ⊕ 𝜂𝑇 be orthogonal to the kernel of the linearization of 𝑑𝑆 ⊕ 𝑑𝑇 at

((𝐽Γ , 𝑓Γ),𝜓 : Δ′ � Δ, 𝑢 : Δ→ 𝑋) ∈ 𝒫 𝑙
Γ ×ℳΓ,Δ ×Map𝑘,𝑝

Δ (m, x, 𝜷).

This condition on 𝑑𝑆 ⊕ 𝑑𝑇 is extremely strong.

First, for each 𝑒 ∈ Edge(Δ) either 𝑙(𝑒) = 0, or the support 𝒯 ⊚•
Δ of the Morse function

perturbation contains an open subset of the interior of 𝐿𝑒 ⊂ 𝑇Δ; in either case–since 𝑢

may not be constant on the tree part—we deduce that 𝜂𝑇 = 0 on 𝐿𝑒 .

Second, if 𝑢 is nonconstant on any component 𝑣 ∈ Vert•(Δ) ∪ Vert◦(Δ), then the

support 𝒮⊚•
Δ of the almost complex structure contains an open subset of the interior of

𝑣, and pseudoholomorphicity (c.f. [MS12, Remark 3.2.3]) implies that 𝜂𝑆 = 0 on the

entirety of 𝑣.

Finally, let 𝐺 ⊂ Vert•(Δ)∪Vert◦(Δ) be the vertices of a maximal nodal tree on which

𝑢 is constant. If 𝐺 consists a single vertex without marked points then it is well-known

that 𝑑𝑆 is surjective there (e.g. [MS12, Chapter 3]), so it remains to check that local
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solutions on single components 𝑣 ∈ 𝐺 assemble into a global solution. However,

this follows immediately from the facts that: first, the components of 𝑣 are glued

according to edges determined by a tree, and second, uncrowdedness of Γ implies that⋃
𝐺 contains at most one marked point of each flavor. □



Chapter 3

The Morse–Fukaya algebra

In this chapter we construct the 𝐴∞-algebra structure maps for the Morse–Fukaya

algebra 𝒜 by taking corrected counts of various zero-dimensional moduli spaces of

pseudoholomorphic treed disks. We prove that these operations satisfy the corre-

sponding (curved) 𝐴∞-relations via exhibiting corresponding 1-dimensional moduli

spaces and analyzing the boundaries of their respective compactifications. Finally, we

address the invariance of our constructions under changes of all choices.

3.1 Universal coefficients

The Morse–Fukaya algebra is generated by the critical points of a suitable Morse

function on the total space of 𝜋 : 𝑋 → 𝑄. Its structure maps are defined by making a

(signed) count of the cardinalities of moduli spaces of pseudoholomorphic treed disks

of the kind studied in Chapter 2 and applying appropriate Floer-theoretic weights 𝑧𝜷

determined by the respective homology classes 𝜷 the treed disks represent.

Consider the moduli spaceℳ𝑃Γ(m, x, 𝜷) of Definition 2.32 for a choice of complete

working perturbation system P, fixing x (i.e. with m, 𝜷, and the type Γ allowed to

vary). In general there may be infinitely many vectors 𝜷 so that the moduli space

of 𝑃Γ-perturbed pseudoholomorphic treed disks with spec (m, x, 𝜷) is nonempty, re-

gardless of potential additional stipulations prohibiting degeneracy of the type Γ.

Correspondingly, our formulas for the multiplication laws of the Morse–Fukaya alge-

53
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bra will contain infinite sums. Fixing a base field k of characteristic zero over which to

work, in order to avoid all questions of analytic convergence (in the classical sense) it

is convenient to introduce the Novikov field

Λ =


∞∑
𝑖=1

𝑐𝑖𝑇𝑥𝑖 : 𝑐𝑖 ∈ k, 𝑥𝑖 ∈ R, lim
𝑖→∞

𝑥𝑖 = ∞


of formal series in the variable 𝑇 with real exponent converging to∞. The ring Λ is a

nonarchimedean field, and is equipped with a valuation map

val : Λ∗ → R defined by
∞∑
𝑖=1

𝑐𝑖𝑇𝑥𝑖 ↦→ min{𝑥𝑖 : 𝑐𝑖 ≠ 0}.

We write 𝑈Λ := val−1(0) ⊂ Λ∗ for its unitary subgroup.

First proposed by [KS01] and employed in [Abo14; Abo17] to define a family Floer

functor, the uncorrected rigid analytic mirror 𝑋∨ of 𝜋 : 𝑋 → 𝑄 has underlying set the

disjoint union

𝑋∨ =
⊔
𝑞∈𝑄

𝐻1(𝐹𝑞 , 𝑈Λ) (3.1.I)

taken over the fibers 𝐹𝑞 of 𝜋, and comes equipped with an obvious projection map

𝜋∨ : 𝑋∨ → 𝑄 which forgets all but the fiber label. Under mirror symmetry, this

construction has the straightforward interpretation that each 𝐻1(𝐹𝑞 , 𝑈Λ) is the torus

in 𝑋∨ dual to 𝐹𝑞 . The modern perspective is that 𝑋∨ should be realized as the

moduli space of Lagrangian fibers of 𝜋 equipped with a unitary rank 1 local system

[Fuk05]—i.e. objects of a suitable Fukaya category of 𝑋 supported on a particular

torus fiber. Since points of this moduli space are determined by their holonomy map

hol : 𝐻1(𝐹𝑞) → 𝑈Λ, they equivalently belong to the disjoint union (3.1.I).

Fix 𝑞 ∈ 𝑄 and a simply connected domain 𝑃 ⊂ 𝑄 containing 𝑞. Then there is a

canonical homotopy class of paths [𝜓𝑝(𝑡)] from 𝑞 to any 𝑝 ∈ 𝑃. For any loop 𝛾 ∈ 𝐻1(𝐹𝑞),
parallel transport along the path 𝜓𝑝(𝑡) takes the class 𝛾 to a class 𝜓𝑝∗𝛾 ∈ 𝐻1(𝑋, 𝐹𝑝).
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While doing so 𝛾 sweeps out a cylinder, and hence yields a class 𝛽 = 𝜓𝑞→𝑝∗𝛾 ∈
𝐻2(𝑋, 𝐹𝑞 ∪ 𝐹𝑝). Since the fibers of 𝜋 are Lagrangian, allowing 𝑝 ∈ 𝑃 to vary we obtain

a well-defined function

𝑧𝛽 = 𝑇𝜔(𝛽) hol(𝜕𝛽) : 𝑋∨|𝑃 → Λ∗

where 𝜔(𝛽) =
∫
𝛽
𝜔 is the symplectic area of 𝛽 = 𝜓𝑞→𝑝∗𝛾 and hol(𝜕𝛽) = hol(𝜓𝑝∗𝛾)

denotes application of the evaluation map 𝐻1(𝐹𝑝 , 𝑈Λ) × 𝐻1(𝐹𝑝) → 𝑈Λ to 𝜓𝑝∗𝛾.

𝑄

𝛾

𝑞𝑝

𝛼

𝜓

Figure 3.1: A schematic diagram depicting the parallel transport of a class 𝛾 ∈ 𝐻1(𝐹𝑞)
by 𝜓𝑝 : [0, 1] → 𝑄 yielding a class 𝛽 = 𝜓𝑞→𝑝∗𝛾.

Let 𝛾1 , . . . , 𝛾𝑛 be loops in 𝐹𝑞 which together represent a basis of 𝐻1(𝐹𝑞), and denote

by 𝛽1 , . . . , 𝛽𝑛 the corresponding classes (depending on 𝑝 ∈ 𝑃) in 𝐻2(𝑋, 𝐹𝑞 ∪ 𝐹𝑝). Then
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the map (𝑧𝛽1 , . . . , 𝑧𝛽𝑛 ) : 𝑋∨|𝑃 → (Λ∗)𝑛 fits into a commutative square

𝑋∨|𝑃 (Λ∗)𝑛

𝑃 R𝑛

𝜋∨ val (3.1.II)

and defines an analytic chart endowing 𝑋∨|𝑃 with the structure of a rigid analytic

space. The analytic functions 𝒪𝑋∨|𝑃 on this local piece are precisely the Laurent series

in the variables 𝑧1 , . . . , 𝑧𝑛 ∈ Λ∗ furnished by the chart (3.1.II) which𝑇-adically converge

over the entirety of 𝑋∨|𝑃 ; this means that each 𝑔 ∈ 𝒪𝑋∨|𝑃 is of the form

𝑔 =
∑

(𝑖1 ,...,𝑖𝑛)∈Z𝑛

𝑔𝑖1 ,...,𝑖𝑛 𝑧
𝑖1
1 · · · 𝑧 𝑖𝑛𝑛 for 𝑔𝑖1 ,...,𝑖𝑛 ∈ Λ

such that

lim
𝑘→∞

|𝑖1|+...+|𝑖𝑛 |=𝑘

©­«val(𝑔𝑖1 ,...,𝑖𝑛 ) +
𝑛∑
𝑗=1

𝑖 𝑗𝜔(𝜓𝑞→𝑝∗𝛾𝑗)ª®¬ = ∞ for all 𝑝 ∈ 𝑃.

In other words, 𝒪𝑋∨|𝑃 is a particular completion of the ring of Laurent polynomials

Λ[𝐻1(𝐹𝑞)].
In effect, for each 𝑝 ∈ 𝑃 we have produced an element of 𝐻1(𝐹𝑝 ;R) � 𝐻1(𝐹𝑞 ;R)

defined by 𝛾𝑖 ↦→ val 𝑧𝛽𝑖 = 𝜔(𝜓𝑞→𝑝∗𝛾𝑖). Allowing 𝑝 to vary yields a local identification

𝑃 ↩→ 𝐻1(𝐹𝑞 ;R).

Definition 3.1. A subset 𝑃 ⊂ 𝑄 is a special affine subset1 if there exist finitely many

[𝛾𝑖] ∈ 𝐻1(𝐹𝑞) and constants 𝜆𝑖 ∈ R such that, under the identification of elements of 𝑃

and 𝐻1(𝐹𝑞 ;R) just described, we have

𝑃 = {𝑝 ∈ 𝐻1(𝐹𝑞 ;R) : 𝑝([𝛾𝑖]) ≤ 𝜆𝑖 for all 𝑖}.
1This is Definition 7.1 of [Tat71].



§3.1 Universal coefficients 57

As in [Abo14], if 𝑃 ⊂ 𝑄 is a special affine subset, then 𝑃 and 𝑋∨|𝑃 are then each

both affinoid domains in the sense of rigid analytic geometry. In order to assemble a

sheaf of universal coefficients for all of 𝑋, we will appeal to Tate’s acylicity theorem:

Theorem 3.2 (Gerritzen–Grauert–Tate [GG15] [BGR84, 7.3.5 Theorem 1]). Every finite

covering of an affinoid space by affinoid domains may be refined to a finite covering by ra-

tional domains. Finite rational coverings, hence finite affinoid coverings, are acylic for Čech

cohomology.

Proposition 3.3. There exists a perfect lift 𝑓 of a Morse function q𝑓 : 𝑄 → R, a compatible

system of divisors D, and a confining polyhedral cover Θ of 𝑄 by special affine subsets.

Proof. Lemma 5.1 of [Abo17] implies that, by choosing q𝑓 such that the induced cellular

decomposition is fine enough, we are guaranteed a cover Θ of 𝑄 which is confining

for any perfect lift 𝑓 of q𝑓 . Choosing q𝑓 so that the induced cellular decomposition is

also fine enough to support a compatible system of divisors provided by Theorem 2.25

proves the claim. □

Definition 3.4. Allowing 𝑃 ⊂ 𝑋 to vary over the affinoid cover we have just described,

by Theorem 3.2 the sheaves 𝒪𝑋∨|𝑃 glue along each inclusion 𝑃𝑖 ↩→ 𝑃𝑗 yielding a sheaf

𝒪an := 𝒪an( 𝑓 ,Θ) of universal coefficients for family Floer theory on 𝜋 : 𝑋 → 𝑄.

Definition 3.5. The Morse–Fukaya algebra is the Z2-graded 𝒪an-module

𝒜 := CM•( 𝑓 ;𝒪an) =
⊕

𝑥∈gen 𝑓

𝒪an|𝜃𝜋(𝑥)[𝐼(𝑥)]

i.e. freely generated by the finitely many generators gen 𝑓 of (2.3.I) and graded by index

𝐼 (modulo 2), where it is understood in the definition that 𝜋(𝑥m,𝑖) = 𝜋(𝑥m,𝑖) = 𝜋(𝑥m,𝑖).

It remains to prescribe well-defined structure maps for𝒜.
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3.2 Compactness and boundary strata

In this section we verify that the moduli spacesℳ𝑃Γ(m, x, 𝜷)of low expected dimension

are compact in the appropriate sense, and in doing so characterize their boundary

strata. Figure 3.2 depicts a 1-parameter family in a 1-dimensional moduli space with

boundary points we will consider subsequently.

Figure 3.2: A representative diagram depicting a 1-parameter family meeting the
boundary of the moduli space in which it resides.

Definition 3.6. A combinatorial type Γ with 𝑛(Γ) inputs is minimally degenerate2 if

whenever Γ′ < Γ then 𝑛(Γ′) < 𝑛(Γ). For each 𝑛 > 0 define

ℳP,𝑛(x) :=
⋃

𝑛(Γ) = 𝑛 and Γ is stable
and minimally degenerate

⋃
(m, x, 𝜷) is a spec

for the type Γ

ℳ𝑃Γ(m, x, 𝜷). (3.2.I)

2Note that this is a coarser notion than that of Γsimp introduced in the proof of Corollary 2.46. Of
course, minimally degenerate types cannot have sphere components and therefore all specs of their type
are uncrowded.
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EachℳP,𝑛(x) decomposes as the union of strataℳP,𝑛(x)𝑑 of expected dimension

𝑑 (according to (2.3.II)). Replacing each stratum of (3.2.I) with its respective compacti-

fication, we obtain natural compactifications3ℳP,𝑛(x) andℳP,𝑛(x)𝑑 of the respective

moduli spacesℳP,𝑛(x) andℳP,𝑛(x)𝑑.

Lemma 3.7. Each inclusion of a stratumℳ𝑃Γ(m, x, 𝜷) ⊂ ℳP,𝑛(x)𝑑 extends to an embedding

of a tubular neighborhood.

Proof. This follows from standard constructions, such as in [Sch16], gluing nodal

pseudoholomorphic disks and broken Morse gradient flow trajectories. □

It is immediate from Lemma 3.7 that all of the spacesℳP,𝑛(x)𝑑,ℳP,𝑛(x)𝑑,ℳP,𝑛(x),
andℳP,𝑛(x) are smooth manifolds. Recalling the energy bound 𝐸(Γ) of (2.4.I), for

each 𝐸 > 0 we also have submanifoldsℳ≤𝐸P,𝑛(x)𝑑 ⊂ ℳP,𝑛(x)𝑑 of all strata enumerated

in (3.2.I) over types Γ with 𝐸(Γ) ≤ 𝐸. Each in turn again has a natural compactification

ℳ≤𝐸P,𝑛(x)𝑑. In this language, our main compactness theorem takes the following form.

Theorem 3.8. Let P be a complete working perturbation system. For all x ∈ (gen 𝑓 )𝑛+1 we

have that:

(3.8.a) for each 𝐸 > 0 the spacesℳ≤𝐸P,𝑛(x)0 andℳ≤𝐸P,𝑛(x)1 are compact, and

(3.8.b) the boundary ofℳ≤𝐸P,𝑛(x)1 is the (disjoint) union of all

ℳ𝑃Γ′ (m′, x′, 𝜷′) taken over all strata ℳ𝑃Γ(m, x, 𝜷) ⊂ ℳ≤𝐸P,𝑛(x)1 ,

where (m′, x′, 𝜷′) is a spec for the type Γ′ obtained from the spec (m, x, 𝜷) for Γ by a

single application of the operation (2.2.a) or (2.2.d).

Theorem 3.8 is proved by studying each ℳ𝑃Γ(m, x, 𝜷) ⊂ ℳ≤𝐸P,𝑛(x)1 individually.

Certain operations (namely (2.2.a) and (2.2.d)) survive the gluing of these strata to give
3For 𝑑 = 1 we will see that these spaces are in general infinite unions of compact 1-dimensional

components.
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boundary points of all ofℳ≤𝐸P,𝑛(x)1. Others (namely (2.2.b) and (2.2.c)) give common

points of boundary strata which glue together.

Theorem 3.9. Let P be a complete working perturbation system, and suppose that (m, x, 𝜷)
is a spec for a stable and minimally degenerate type Γ. Denote by 𝑑 the expected dimension of

ℳ𝑃Γ(m, x, 𝜷) according to (2.3.II). We have that

(3.9.a) if 𝑑 = 0 then the spaceℳ𝑃Γ(m, x, 𝜷) is compact, and

(3.9.b) if 𝑑 = 1 then the boundary of the space ℳ𝑃Γ(m, x, 𝜷) is the union of the spaces

ℳ𝑃Γ′ (m′, x′, 𝜷′) taken over all specs (m′, x′, 𝜷′) of type Γ′ obtained from (m, x, 𝜷) by

a single application of one of the operations (2.2.a)–(2.2.d). Moreover, in the operation

(2.2.c), the creation of sphere bubbles is prohibited.

Proof. Let (𝑢𝑖 : Δ𝑖 → 𝑋) be a sequence of pseudoholomorphic treed disks representing

a sequence ([𝑢𝑖]) inℳ𝑃Γ(m, x, 𝜷) for 0 ≤ 𝑑 ≤ 1. For each of the finitely many component

vertices 𝑣 ∈ Vert•(Γ) ∪ Vert◦(Γ) we may form the restriction (𝑢𝑖|𝑣), which yields in

each case a sequence of honest pseudoholomorphic disks or spheres; by successively

passing to subsequences, Gromov compactness (c.f. Theorem 1.11) implies that (𝑢𝑖|𝑣)
converges to a pseudoholomorphic treed disk 𝑢𝑣 : Δ𝑣 → 𝑋 for each fixed 𝑣. Similarly,

compactness of the space of Morse gradient flow trajectories (c.f. Theorem 1.5) yields,

again by passing to subsequences, that the restriction 𝑢𝑖|𝐿𝑒 to each edge 𝑒 ∈ Edge(Δ)
converges to some 𝑢𝑒 : Δ𝑒 → 𝑋 with Δ𝑒 having 1 input and containing no non-constant

components (a broken Morse gradient flow trajectory).

Gluing these limits 𝑢𝑣 and 𝑢𝑒 at their inputs and outputs, we may therefore assume

that (𝑢𝑖) converges to a pseudoholomorphic treed disk 𝑢 : Δ → 𝑋 of some spec

(m′, x′, 𝜷′) for the type Γ′. In order show that Γ′ is again stable, let 𝑣′ ∈ Vert•(Γ′) ∪
Vert◦(Γ′) be any disk or sphere component; we must check that 𝑣′ contains enough

joints (in the sense of Definition 2.9). If 𝑢|𝑣′ is constant then there is nothing to check,

because the map 𝑢 is itself stable (c.f. Definition 2.19).
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Otherwise, assume 𝑢|𝑣′ is nonconstant. Since 𝑢 was assembled as a gluing, the

vertex 𝑣′ also belongs to Vert(Γ(Δ𝑣)) for some 𝑣 ∈ Vert(Γ). By conservation of sym-

plectic energy in the limit we have 𝜔(𝑢|𝑣′) ≤ 𝐸(𝑢|Δ𝑣 ) ≤ 𝐸(Γ(𝑣), x). As the perturbation

datum 𝑃′Γ is assumed compatible (c.f. Definition 2.38) with D, the perturbed almost

complex structure for which 𝑢|𝑣′ is pseudoholomorphic is 𝐸(Γ(𝑣), x)-stabilizing. It

follows immediately that 𝑣′ contains enough joints in this case as well.

We must also verify the spec (m′, x′, 𝜷′) is again uncrowded; let Γ′𝐺 be the uncrowd-

ing at a subset 𝐺 ⊂ Vert◦(Γ′). By restriction, 𝐺 determines a spec (m′𝐺 , x′, 𝛽′𝐺) of type Γ′𝐺
for which the map 𝑢 : Δ→ 𝑋 gives rise to an element [𝑢𝐺] ofℳ𝐺 :=ℳ𝑃Γ′𝐺

(m′𝐺 , x′, 𝛽′𝐺).
Choosing 𝐺 so that (m′𝐺 , x′, 𝜷′𝐺) is uncrowded we have that the expected dimension

formula (2.3.II) holds forℳ𝐺, and since 𝑑 < 2, it predicts thatℳ𝐺 is empty (i.e. of

negative dimension) unless Γ′𝐺 = Γ′. Therefore this is the only possibility, and the spec

(m′, x′, 𝜷′)was already uncrowded.

This all shows that the expected dimension formula (2.3.II) holds for the stratum

ℳ𝑃Γ(m′, x′, 𝜷′) ofℳ𝑃Γ(m, x, 𝜷) in which 𝑢 lies. If 𝑑 = 0 this implies that Γ′ = Γ and

verifies compactness. If 𝑑 = 1 this implies admissibility of the operations claimed in

(3.9.b), and prohibits the creation of any sphere component since once again after any

single application of this operation the expected dimension ofℳ𝑃Γ(m′, x′, 𝜷′) would

be reduced to −1 = 𝑑 − 2 < 0. □

With this characterization in hand, Theorem 3.8 now follows easily.

Proof of Theorem 3.8. By Theorem 3.9 each spaceℳ≤𝐸P,𝑛(x)0 andℳ≤𝐸P,𝑛(x)1 is an honest

compact topological space, for the reason that there are finitely many vectors 𝜷 with

𝐸(𝜷) ≤ 𝐸 for which pseudoholomorphic treed disks 𝑢 of spec (m, x, 𝜷) may exist.

This follows by an elementary argument relying on the fact that 𝐻2(𝑋, 𝐹𝑞) is finitely

generated and that the total homology class is preserved in any limit (or alternatively,

as a particular consequence of Gromov compactness Theorem 1.11).
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The claimed characterization of boundary strata of ℳP,𝑛(x)1 is a result of the

pairing-up of 1-dimensional strata along 0-dimensional common boundaries respec-

tively obtained from an application of the operation (2.2.b) or (2.2.c)—this is depicted

in Figure 3.3. In one direction, a pair of disk components meeting at a common node

may be deformed into one another (thereby viewing the initial nodal configuration as

a result of disk bubbling à la (2.2.c)). In the other direction, the nodal configuration

may be resolved by making the length of the zero-length edge encoding the nodal joint

positive (à la (2.2.b)).

For completeness4, we note that the boundary-normal direction of a boundary

stratum arising from the operation (2.2.a) points in the direction which corresponds

to the resolution of a broken edge into an edge of finite length; this is a semi-infinite

and not infinite family of deformations because a broken Morse gradient flow line

cannot stably “break more” at a breaking. Finally, operation (2.2.d) yields points of a

1-dimensional stratum ofℳP,𝑛(x)1 which manifestly lie on the boundary, the entire

stratum to which they each respectively belong in each case being itself parameterized

by the weight 𝜌(𝑒) ∈ [0,∞] of a particular edge. □

3.3 Multiplication maps and grading

An arbitrary spec (m, x, 𝜷) for a combinatorial type Γ in particular records classes 𝛽𝑣 ,

each belonging to homology groups𝐻2(𝑋, 𝐹𝑞)depending on the fiber 𝐹𝑞 which bounds

each respective component 𝑣. However, parallel transport over the simply connected

base𝑄 allows all of these classes to be transported to a class 𝛽′𝑣 ∈ 𝐻2(𝑋, 𝐹𝜋(𝑥0)) bounded

by the output fiber. Thus we may interpret 𝑧𝜷𝑥0 := 𝑧
∑

𝑣 𝛽
′
𝑣𝑥0 as a well-defined element

of𝒜|𝜃𝑥0
.

4Technically, in order to verify the 𝐴∞-relations we subsequently enumerate, we need only know that
honest boundary points ofℳP,𝑛(x)1 do not arise from operations (2.2.b) and (2.2.c); the other possibilities
are themselves accounted for by the algebraic relations themselves.
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Figure 3.3: A schematic diagram depicting the nodal domain configuration lying at
the common boundary point where two 1-dimensional strata ofℳP,𝑛(x)1 are glued,
this point obtained from domain configurations arising from a single application of
the operation (2.2.b) or (2.2.c) respectively.

We are now finally in a position to define the 𝐴∞-multiplication maps 𝜇𝑛 :𝒜⊗𝑛 →
𝒜[2−𝑛] for the Morse–Fukaya algebra𝒜. Given generators x = (𝑥1 , . . . , 𝑥𝑛) ∈ (gen 𝑓 )𝑛

and 𝑥0 ∈ gen 𝑓 , write (𝑥0 , x) for the concatenation (𝑥0 , 𝑥1 , . . . , 𝑥𝑛). We declare

𝜇𝑛(x) := (−1)♥
∑

𝑥0∈gen 𝑓
[𝑢]∈ℳP,𝑛(𝑥0 ,x)0

𝑜([𝑢])∏
𝜅∈𝒦

#Mark𝜅(Γ([𝑢]))!
· 𝑧𝜷([𝑢])𝑥0 for all 𝑛 ≥ 0, (3.3.I)

with ♥ =
∑𝑛

𝑘=1 𝑘𝐼(𝑥𝑘) and extend𝒪an-linearly (with the understanding that 𝑜([𝑢]) = ±1

denotes the orientation of [𝑢] and if 𝑢 is of spec (m, x, 𝜷) then 𝜷([𝑢]) = 𝜷).

We prove well-definedness of this sum via an elementary technique known as

Fukaya’s trick (observed in [Fuk10], see also [Abo14; Abo17]).



64 The Morse–Fukaya algebra

Lemma 3.10. If the polyhedral cover Θ is sufficiently fine, then the formula (3.3.I) is well-

defined for every x.

Proof. We must arrange a polyhedral cover Θ such that for each fixed 𝑥0 ∈ gen 𝑓 and

minimally degenerate stable type Γ the infinite sum

∑
(m, x, 𝜷) is a spec

for the type Γ

#ℳ𝑃Γ(m, x, 𝜷)∏
𝜅∈𝒦

#Mark𝜅(Γ([𝑢]))!
· 𝑧𝜷 (3.3.II)

is a well-defined element of 𝒪an|𝜃𝑥0
, i.e. converges with respect the valuation val at all

points of (𝜋∨)−1(𝜃𝑥0)—note that, by construction, each 𝒪an|𝜃𝑥𝑖
is naturally a subring of

𝒪an|𝜃𝑥0
whenever there exists a broken Morse gradient flow trajectory from 𝑥𝑖 to 𝑥0.

Recall that (𝑋, 𝜔, 𝐽) is a Kähler manifold. Now, the symplectic area of a 𝐽-

holomorphic sphere or disk 𝑢 : 𝐶 → 𝑋 is computed as

𝜔(𝑢) =
∫
𝐶
𝑢∗𝜔 =

1
2

∫
𝐶
∥d𝑢∥2𝐽 dvol

via the metric, and hence for a perturbed almost complex structure 𝐽′ (such as 𝐽0 of

Remark 2.23) chosen 𝐶1-close to 𝐽 we have (for the induced deformed metric ∥·∥𝐽′)

1
2𝜔(𝑢) <

1
2

∫
𝐶
∥d𝑢∥2𝐽′ dvol < 2𝜔(𝑢). (3.3.III)

So long as each cell 𝜃 ∈ 𝐶 is sufficiently small, for each 𝑝, 𝑞 ∈ 𝐶 we can find a

diffeomorphism Φ : 𝑄 → 𝑄 isotopic to the identity for which Φ(𝑞) = 𝑝, such that the

further deformed complex structure 𝐽𝑞 := Φ∗𝐽0 is 𝜔-tame, and with Φ chosen 𝐶1-close

enough to the identity such that (3.3.III) continues to hold for 𝐽𝑞 .

But now (3.3.III) implies that that the valuation of each term of (3.3.II) obeys
1
2𝜔(𝜷) ≤ val 𝑧𝜷 ≤ 2𝜔(𝜷). Convergence of the sum (3.3.III) follows from the conse-

quence of ordinary Gromov compactness Theorem 1.11 that there are only finitely
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many isomorphic classes of treed disks with boundary on a single Lagrangian with

energy below any finite bound. □

Theorem 3.11. The multiplication law (3.3.I) endows the Morse–Fukaya algebra𝒜 with the

structure of an 𝐴∞-algebra. That is, for each 𝑛 ≥ 0 and homogeneous elements 𝑎𝑖 ∈ 𝒜 of

respective degrees |𝑎𝑖| we have the 𝐴∞-identity [Sei08a]

0 =
∑
𝑗+𝑘≤𝑛
(−1)𝑗+

∑𝑗
𝑖=1|𝑎𝑖 |𝜇𝑛−𝑘+1(𝑎1 , . . . , 𝑎 𝑗 , 𝜇𝑘(𝑎 𝑗+1 , . . . , 𝑎 𝑗+𝑘), 𝑎 𝑗+𝑘+1 , . . . , 𝑎𝑛). (3.3.IV)

Proof. Recall the subspaces ℳ≤𝐸P,𝑛(𝑥0 , x)1 ⊂ ℳP,𝑛(𝑥0 , x)1 of all strata enumerated in

(3.2.I) over types Γ with 𝐸(Γ) ≤ 𝐸. By Theorem 3.8 each such space is an honest

compact oriented 1-manifold with boundary. Therefore the signed count of boundary

points ofℳ≤𝐸P,𝑛(𝑥0 , x)1 is zero, and hence allowing 𝐸 > 0 to vary we obtain the identity

0 =
∑

[𝑢]∈𝜕ℳP,𝑛(𝑥0 ,x)1

𝑜([𝑢])∏
𝜅∈𝒦

#Mark𝜅(Γ([𝑢]))!
𝑧𝜷([𝑢])𝑥0 (3.3.V)

for all energies simultaneously. Observe that by construction we have multiplicativity

of the weights 𝑧𝜷, in the sense that if [𝑢] is obtained by gluing [𝑢2] to [𝑢1] at an input

we have, after parallel transport to the final output 𝑥0 of [𝑢], the identity 𝑧𝜷([𝑢])𝑥0 =

𝑧𝜷([𝑢1])𝑧𝜷([𝑢2])𝑥0. In the absence of weighted edges, the boundary characterization of

Theorem 3.8 now implies the claim, up to sign; a detailed analysis of compatibility of

orientation signs for constructions of this kind appears in [WW15; MWW18].

Finally, in order to handle weighted edges, consider a connected component of

ℳP,𝑛(𝑥0 , x)1 with boundary components arising from the operation (2.2.d) (an edge

weight becoming zero or infinite). By the orientation convention described above,

together these boundary components contribute a difference 𝑥m,𝑖 − 𝑥m,𝑖 to (3.3.V),

precisely as desired. □
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Let 𝑒 :=
∑

𝑖 𝑥m,𝑖 be the sum of all of the finitely many formal generators correspond-

ing to minima 𝑥m,𝑖 of 𝑓 (c.f. (2.3.I)).

Theorem 3.12. The element 𝑒 ∈ 𝒜 is a strict unit, in that for all 𝑛 > 2 we have𝜇𝑛(. . . , 𝑒 , . . .) =
0 identically and

𝜇2(𝑒 , 𝑎) = (−1)|𝑎|𝜇2(𝑎, 𝑒) = 𝑎 for all homogeneous 𝑎 ∈ 𝒜.

Proof. First let 𝑛 > 2, consider an arbitrary product 𝜇𝑛(x) determined by the vec-

tor x = (𝑥1 , . . . , 𝑥 𝑗−1 , 𝑥m,𝑖 , 𝑥 𝑗+1 . . . , 𝑥𝑛) for some 𝑗, and denote by px the vector ob-

tained from x by deleting the 𝑗th component. By construction, since the perturba-

tion datum 𝑃Γ respects operation (2.2.e) (forgetting a forgettable edge), each space

ℳ𝑃Γ(m, (𝑥0 , x), 𝜷) ⊂ ℳ𝑃Γ(𝑥0 , x)0 is in canonical bĳection withℳ𝑃Γ(m, (𝑥0 ,px), 𝜷). The

dimension of this latter moduli space is at least 1 less than the expected dimension of

a generic stratum ofℳ𝑃Γ(𝑥0 , x)0, which is zero. It follows that both such spaces must

actually be empty, from which we immediately conclude 𝜇𝑛(x) = 0.

Now suppose that 𝑛 = 2. In this case each [𝑢] ∈ ℳ𝑃Γ(m, (𝑥0 , x), 𝜷) is, modulo

sphere components, an honest broken Morse gradient flow tree necessarily with inputs

𝑥m,𝑖 and 𝑥 (in some order) and output 𝑥0 = 𝑥. But generic points of 𝑋 lie in the

ascending flow manifold of a unique minimum, and by construction the perturbation

datum specifying the perturbation of the Morse function on edges labeled by 𝑥m,𝑖

preserves the property that (generically) every point lies in a unique flowline from a

minimum. This completes the proof. □

3.4 Refinement and invariance

The Morse–Fukaya algebra𝒜 we have constructed depends on compatible choices of

Morse function 𝑓 on 𝑋, background system of stabilizing divisors D, and confining

(integral affine) polyhedral cover Θ. Changes of these choices induce comparison
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maps 𝒜0 → 𝒜1 between the algebras that we would respectively construct in each

case. We explain how to define these comparison maps below; they will permit us to

establish a suitable notion of invariance of choices for 𝒜, in addition to providing a

convenient ingredient in one formulation of the family Floer functor we will define in

Chapter 4.

The natural (and geometric) way to proceed is to exhibit a suitable Morse function,

stabilizing divisors, and integral affine cover for [0, 1] × 𝑋, so that we may directly

apply our existing technology to obtain an algebra𝒜∗ interpolating between𝒜0 and

𝒜1. However, this approach suffers from some technical issues (for example, due to

enlarging 𝒪an with the addition of another variable) which make implementing the

strategy in practice unnecessarily cumbersome.

Instead we will prefer to deal with what is essentially a formal version of this

construction, combining ideas of [Maz22] and [Sei08b]. Avoiding basically all of the

technical issues which would otherwise arise, we pay the simple price that we cannot

literally re-use the moduli spaces and associated results produced above. Below

we explain the necessary small enhancement of both our constructions and of the

corresponding arguments required to complete this strategy.

First, in order to introduce an auxiliary time-tracking parameter key to the con-

struction, denote by I =
⊔

𝑛∈N 𝐸𝑛/∼ the gluing of disjoint copies 𝐸𝑛 = [−∞,∞] of

the extended real line at their endpoints when laid sequentially end-to-end; writing

±∞𝑛 ∈ 𝐸𝑛 to distinguish each such pair of endpoints, we declare ∞𝑛 = −∞𝑛+1 for all

𝑛 ∈ N. We think of I as time, divided into an infinite sequence of epochs 𝐸𝑛 . Of course,

I is topologically again a closed interval, but we view this decomposition as providing

a distinguished parametrization of (and indeed metric on) each epoch in I.

Definition 3.13. A timed 𝑃Γ-perturbed pseudoholomorphic treed disk (𝑢, 𝜏) is a pseu-

doholomorphic treed disk 𝑢 : Δ→ 𝑋 equipped with a continuous function 𝜏 : Δ→ I

such that
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• the background data 𝐽 and 𝑓 , stabilizing divisor activities 𝛼𝜅, and perturbations

𝑃Γ all depend in addition on the current time 𝜏,

• for all 𝑣 ∈ Vert•(Δ) ∪ Vert◦(Δ) the restriction 𝜏|𝑣 is constant (i.e. disk and sphere

components are constant in time), and

• for all 𝑒 ∈ Edge𝜕(Δ) and 𝑡 ∈ int(𝐿𝑒)we have that (𝜏|𝐿𝑒 )′(𝑡) = 1 (i.e. time increases

along Morse flow trajectories at uniform speed). .

In particular, given Morse functions 𝑓0 and 𝑓1 on 𝑋, we will choose a smooth

interpolating family 𝑓𝑡 : I × 𝑋 → R (not necessarily through Morse functions) for

which we have 𝑓𝑡 = 𝑓0 for all 𝑡 ∈ 𝐸𝑛 with 𝑛 < 0, and conversely 𝑓𝑡 = 𝑓1 for all 𝑡 ∈ 𝐸𝑛

with 𝑛 > 0.

Definition 3.14. A family of maps ℎ𝑛 : 𝒜⊗𝑛 → 𝒜′[1 − 𝑛] between 𝐴∞-algebras 𝒜
and𝒜′ assemble into an 𝐴∞-morphism ℎ : ℬ → 𝒞 precisely when for each 𝑛 ≥ 0 and

homogeneous elements 𝑎𝑖 ∈ 𝒜 of respective degrees |𝑎𝑖|we have the identity

∑
𝑗+𝑘≤𝑛
(−1)♥ℎ𝑛−𝑘+1(𝑎1 , . . . , 𝑎 𝑗 , 𝜇𝑘

𝒜(𝑎 𝑗+1 , . . . , 𝑎 𝑗+𝑘), 𝑎 𝑗+𝑘+1 , . . . , 𝑎𝑛)

=
∑

𝑖1+...+𝑖𝑑=𝑛
𝜇𝑑
𝒜′(ℎ 𝑖1(𝑎1 , . . . , 𝑎𝑖1), . . . , ℎ 𝑖𝑑 (𝑎𝑖1+...+𝑖𝑑−1+1 , . . . , 𝑎𝑛)) (3.4.I)

with ♥ = 𝑗 +∑𝑗
𝑖=1|𝑎𝑖|.

Theorem 3.15. By considering moduli spaces of timed 𝑃Γ-perturbed pseudoholomorphic treed

disks, whenever the cover Θ′ used to define an instance 𝒜′ of the Morse–Fukaya algebra is

a refinement of another cover Θ used to define an instance 𝒜, there exists a refinement

morphism 𝑟 :𝒜 →𝒜′ of 𝐴∞-algebras.

Proof sketch. We avoid explicitly enumerating each of our previous constructions in

order to make the straightforward small modification needed to incorporate time-

dependence in each case, and instead simply explain the new consequences. Existence
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of applicable working systems of perturbation data follows from precisely the same

argument as in the proof of Theorem 2.45. Moduli spaces of timed 𝑃Γ-perturbed treed

disks have expected dimension one more than their ordinary counterparts due to

presence of the time parameter, and therefore the corresponding counts according to

(3.3.I) define an operation of degree one less (in accordance with (3.4.I)). In particular,

so long as the cover Θ′ is a refinement of Θ and 𝑓𝑡 is suitably chosen the formula (3.3.I)

continues to be convergent in this setting. The classification theorem corresponding

to Theorem 3.8 asserts once again that the only honest boundary components of the

1-dimensional moduli spaces we consider arise from either a Morse gradient flow

lines breaking, or forgetting an input. The presence of the time function 𝜏 causes

the existence of a breaking (necessarily lying on a Morse flow line of infinite length)

to imply, after cutting the treed disk at the breaking, that one of the two resulting

treed disks has time 𝜏 strictly contained in 𝐸𝑛 for either all 𝑛 < 0 or all 𝑛 > 0. But,

since 𝑓𝑡 = 𝑓0 or 𝑓𝑡 = 𝑓1 in either region, the 𝐴∞-relation (3.4.I) exactly enumerates all

broken timed treed disks of this form; the left hand side counting the former case,

and the right hand side counting the latter. The claim then reduces to a verification of

coherence of orientation signs, which one checks directly. □

It is left to the reader to establish a suitable coherence result for the refinement

morphisms of Theorem 3.15 (applicable to the curved, filtered, gapped 𝐴∞-algebraic

setting, c.f. [Fuk+10a]) which adequately captures the notion of homotopy equivalence

that they witness.





Chapter 4

The family Floer functor

In this chapter we construct a family Floer 𝐴∞-functor

𝒞 : ℱsec → mod-𝒜,

defined on the Fukaya category of Lagrangian sectionsℱsec of𝜋 and valued in the category

mod-𝒜 of 𝐴∞-modules for 𝒜. That is, ℱsec is the full 𝐴∞-subcategory of the Fukaya

category of 𝑋 with objects

obℱsec = {𝐿 ⊂ 𝑋 | 𝐿 ∩ 𝑋 is a section of 𝜋 : 𝑋 → 𝑄},

and morphisms and composition maps determined by the Floer theory of these sec-

tions with one another. We begin by explaining how to upgrade the technology of

Chapter 2 to produce a model for this category, and for which we may subsequently

produce from each 𝐿 ∈ obℱsec a Λ-module carrying a natural action of𝒜.

4.1 Bookkeeping upgrades

First, in order to model treed configurations of disks and spheres bounded by a

collection of Lagrangian sections of 𝜋 (possibly also in addition to fibers 𝐹𝑞) it is

necessary to enhance the class of perturbed pseudoholomorphic treed disk-like objects

we consider. No change to the domains Δ or associated combinatorial types Γ = Γ(Δ)

71
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they specify is necessary on-the-nose, but it will greatly simplify our subsequent

constructions if from the outset we annotate each of the combinatorial types Γ we

consider with a particular vector 𝝀 of Lagrangian section boundary labels associated

to the output and each input of Γ.

In order to motivate and then specify these labels precisely, for the remainder of

this section fix a background finite collection L ⊂ obℱsec of Lagrangian sections of

𝜋. Define ℬ(L) := {𝐹𝑞 : 𝑞 ∈ 𝑄} ∪ L as a convenient shorthand. The starting point

is that we will shortly relax the condition (2.16.c) in the definition of a perturbed

pseudoholomorphic treed disk 𝑢 so that 𝑏𝑢 is a function

𝑏𝑢 : 𝜋0(𝜕𝑆Δ − Joint(Δ)) → ℬ(L). (4.1.I)

In other words, boundary components of the surface part 𝑆Δ − Joint(Δ) of a treed disk

Δ will be allowed to lie on Lagrangian sections 𝐿 ∈ L.

Remark 4.1. We note a consequence of this, and thereby extend the definition of 𝑏𝑢 to

boundary edges: let 𝑒 ∈ Edge𝜕(Δ) be an edge of boundary type, i.e. possibly meeting

only disk component boundaries and point vertices. Suppose that the edge 𝑒 meets

𝜕𝑣• at 𝑡(𝑒) for some disk component 𝑣• ∈ Vert•(Δ), so that 𝑒 is adjacent on either

side to two (possibly identical) boundary components 𝑐− , 𝑐+ ⊂ 𝜕𝑣• − Joint(Δ). This is

depicted in Figure 4.1a. These components are canonically ordered by the orientation

on 𝑣• and together determine an ordered pair of edge boundary labels

𝑏𝑢𝑡 (𝑒) := (𝑏𝑢(𝑐−), 𝑏𝑢(𝑐+)) ∈ ℬ(L)2.

Similarly, if the edge 𝑒 meets components 𝑐− and 𝑐+ of 𝜕𝑣• at ℎ(𝑒) for some disk

component 𝑣• ∈ Vert•(Δ), then there is again a canonically determined collection of

boundary labels 𝑏𝑢ℎ (𝑒) := (𝑏𝑢(𝑐−), 𝑏𝑢(𝑐+)).
When the image of an edge 𝑒 ∈ Edge𝜕(Δ) under 𝑢 meets a disk boundary compo-
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nent mapping to a Lagrangian section (as detected by 𝑏𝑢𝑡 and 𝑏𝑢ℎ ), we would like to

constrain 𝑒 to be a Morse flow trajectory lying wholly in that section (with respect to

the restriction of the global Morse function on 𝑋). Otherwise, the image of 𝑒 is free to

be a gradient flow trajectory inside the entirety of 𝑋. Also, we would like 𝑏𝑢𝑡 (𝑒) and

𝑏𝑢ℎ (𝑒) to agree whenever either of their components lies on a Lagrangian section.

As a convenient artifice to enforce both of these constraints, define ℬ̃(L) := {𝑋}∪L

and let 𝜌 : ℬ(L) → ℬ̃(L) be the natural projection defined on fibers 𝐹𝑞 and Lagrangian

sections 𝐿 of 𝜋 respectively by

𝐹𝑞 ↦→ 𝑋 and 𝐿 ↦→ 𝐿.

The functions 𝑏𝑢𝑡 and 𝑏𝑢ℎ above descend to maps 𝑏̃𝑢𝑡 and 𝑏̃𝑢ℎ valued in ℬ̃(L).
In order to keep consistent track of the boundary labels defined above, we introduce

an auxiliary function

𝑏̃ = (𝑏̃− , 𝑏̃+) : Edge𝜕(Δ) → ℬ̃(L)2

defined on all boundary edges whatever. Consistency of Lagrangian section boundary

labels across edges of 𝑢 : Δ→ 𝑋 (respecting the orientation of disk components) now

amounts to the requirement that 𝑏̃𝑢𝑡 (𝑒) = 𝑏̃(𝑒) and 𝑏̃𝑢ℎ (𝑒) = 𝑏̃(𝑒)whenever either of these

equations make sense (see Figure 4.1b). To ensure consistency along infinite (broken)

edges, whenever there is 𝑣+ ∈ Vert+(Δ) with ℎ(𝑒in) = 𝑣+ = 𝑡(𝑒out) we require that

𝑏̃𝑢(𝑒in) = 𝑏̃𝑢(𝑒out) as in Figure 4.1c.

Observe that once the value of 𝑏𝑢 has been prescribed on each component of

𝜕𝑆Δ − Joint(Δ), the value of the boundary label 𝑏̃𝑢(𝑒) of all edges 𝑒 ∈ Edge𝜕(Δ) is

completely determined.

Importantly, the converse of the final conclusion of Remark 4.1 also holds.

Definition 4.2. For 1 ≤ 𝑖 ≤ 𝑛 let 𝑣𝑖 ∈ Vert+(Δ) be the 𝑖th input of Δ and write 𝑒𝑖 for the

corresponding unique edge such that 𝑡(𝑒𝑖) = 𝑣𝑖 . Similarly, write 𝑒0 for the root edge.
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The consistency conditions imposed on 𝑏̃ above across all boundary edges whatever

imply that the value of 𝑏̃(𝑒) for 𝑒 ∈ Edge𝜕(Δ) is completely determined by knowledge

of (𝜆−𝑖 ,𝜆+𝑖 ) := 𝑏̃(𝑒𝑖) for all 0 ≤ 𝑖 ≤ 𝑛.

The labels 𝜆±𝑖 assemble into a vector 𝝀 ∈ (ℬ̃(L)2)𝑛+1 specifying (I/O) boundary

labels for the type Γ. After prescribing a particular choice of boundary labels 𝝀,

write 𝑏̃Γ,𝝀 : 𝜋0(𝜕𝑆Δ − Joint(Δ)) → ℬ̃(L) for the induced labels on all of the boundary

components of 𝜕𝑆Δ − Joint(Δ). It will often be convenient to refer to the pair (Γ, 𝝀) as a

labeled (combinatorial) type.

In order that our general perturbation scheme may support maps from treed disks

with the weakened boundary conditions we wish to consider, we introduce an ad-

ditional parameter to our perturbation data in order to establish transversality for

sections. The use of Hamiltonian perturbations for this purpose is very standard;

[Sei08b] is a main reference. Thus for all treed disks Δ and boundary label 𝝀 vec-

tor for the type Γ(Δ)—in particular inducing a boundary label on each component of

𝜕𝑆Δ−Joint(Δ) as in Definition 4.2—choose once and for all a compact subset𝒮⊚• ,𝐻
Δ,𝝀 ⊂ 𝒮Δ

of the surface part of the universal treed disk on which our Hamiltonian perturbations

will be supported, such that 𝒮⊚• ,𝐻
Δ,𝝀

• meets a neighborhood of each boundary joint with adjacent boundary compo-

nents both labeled by Lagrangian sections (𝐿, 𝐿′) ∈ 𝒟(L)2,

• is disjoint from each sphere component, from a neighborhood of all bound-

ary components labeled by 𝑋 ∈ 𝒟(X), and from the the entirety of each disk

component for which all boundary labels are 𝑋 ∈ 𝒟(L).

Recalling the compact subset 𝒮⊚•
Δ ⊂ 𝒮Δ of Section 2.2 on which perturbations of the

almost complex structure are supported, write 𝒮⊚• ,𝐽
Δ := 𝒮⊚•

Δ to avoid confusion.

Let (Γ, 𝝀) be a labeled type and suppose that the treed disk Δ has Γ(Δ) = Γ. As

in [Sei08b] we also choose once and for all a strip-like end for a neighborhood of each
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(a)

𝐿1

𝐿2

𝑒

𝑡(𝑒)

(b) 𝐿1

𝐿2

𝐿2

𝐿1

𝑒

Figure 4.1: Schematic diagrams of the consistency conditions determining the bound-
ary labels 𝑏𝑢(𝑒) of boundary edges 𝑒 ∈ Edge𝜕(Δ).
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(c)

𝑣+

𝐿1

𝐿2

𝐿2

𝐿1

Figure 4.1 (cont.): Schematic diagrams of the consistency conditions determining the
boundary labels 𝑏𝑢(𝑒) of boundary edges 𝑒 ∈ Edge𝜕(Δ).

boundary joint inΔ adjacent to a pair of Lagrangian labels, i.e. a biholomorphism𝜓(𝑠+
𝑡𝑖) from [0,∞]×[0, 1] to a neighborhood of each boundary joint 𝑧 ∈ Joint𝜕(Δ) belonging

to some 𝑣• ∈ Vert•(Δ)with adjacent to components 𝑐± ⊂ 𝜕𝑣• such that 𝑏̃𝑢(𝑐±) = 𝐿± ∈ L.

We also choose a model Hamiltonian 𝐻𝐿± defined on this neighborhood, depending

only on the (ordered) boundary labels 𝐿±, with 𝐻𝐿± a function of 𝑡 only with respect

to the coordinates 𝑠 + 𝑡𝑖 induced by 𝜓.

Definition 4.3. Let L ⊂ obℱsec be a subset. An L-perturbation datum 𝑃Γ,𝝀 for the labeled

type (Γ, 𝝀) is a perturbation datum for Γ (c.f. Definition 2.14) along with, in addition, a

choice of Hamiltonian perturbations (writing Ω1
vert(𝒮Γ) for the vertical 1-forms1 on 𝒮Γ)

𝐻Γ,𝝀 ⊗ 𝛼Γ,𝝀 : 𝒮Γ → C∞(𝑄 → R) ⊗ Ω1
vert(𝒮Γ)

1These may be identified with 1-forms on 𝑆Δ for some Δ with Γ(Δ) = Γ.
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which restrict to zero on 𝒮Γ − 𝒮⊚• ,𝐻
Γ,𝝀 . We require that in each strip-like end 𝐻Γ,𝝀

converges to the prechosen Hamiltonian 𝐻𝐿± associated to the ordered pair (𝐿− , 𝐿+),
and similarly that 𝛼Γ,𝝀 = d𝑡 in each strip-like end and 𝛼Γ,𝝀 vanishes at the disk

boundary. We correspondingly also extend the notion of locality of perturbation data

(as in Definition 2.42) to require that each 𝐻Γ,𝝀 ⊗ 𝛼Γ,𝝀 similarly factors through the

uncrowding construction in the natural way.

An L-perturbation system P = {𝑃Γ,𝝀}(Γ,𝝀)∈Γ is a collection of L-perturbation data

obeying the axioms of Definition 2.15; of course, the degeneration and cut operations

naturally extend to operations on labeled types (Γ, 𝝀).

Generalizing the the terminology of [VWX20], we now define the extended kind

of treed maps we consider.

Definition 4.4. A 𝑃Γ,𝝀-perturbed pseudoholomorphic treed (L-)polygon is a pseudoholo-

morphic treed disk 𝑢 : Δ→ 𝑋 (c.f. Definition 2.16), with the exceptions that:

• The boundary label function is extended as in (4.1.I) and (2.16.c) holds with this

modification.

• On the tree part 𝑢 is consistent with the boundary labels in that

𝑢(𝑡) ∈ 𝑏̃𝑢−(𝑒) ∩ 𝑏̃𝑢+(𝑒) for all 𝑒 ∈ Edge𝜕(Δ) and 𝑡 ∈ 𝐿𝑒 .

This implies, for example, that if in the image of 𝑢 the head of an edge 𝑒 meets

the boundary of a disk component with adjacent boundaries labeled by sections

𝐿, 𝐿′ ∈ L which happen to intersect transversely, then 𝑢|𝐿𝑒 is a Morse gradient

flow trajectory contained in 𝐿 ∩ 𝐿′—and is therefore constant.

• The pseudoholomorphic curve equation (2.16.a) no longer holds on-the-nose,

and instead is perturbed by the chosen Hamiltonian perturbation 𝐻Γ,𝝀 so that

if 𝜕 is the operator 1
2 (𝐷 − 𝐽 ◦ 𝐷 ◦ 𝑗) and 𝑋𝐻Γ,𝝀 is the corresponding Hamiltonian
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vector field we have (
𝜕𝑢 − 𝑋𝐻Γ,𝝀 ⊗ 𝛼

)0,1

𝐽 , 𝑗
= 0.

• The Morse gradient flow equation (2.16.b) holds on each edge 𝐿𝑒 for 𝑒 ∈ Edge𝜕(Δ)
of the tree part, with respect to a Morse function 𝑓𝑒 depending on the boundary

label 𝑏̃𝑢(𝑒) ∈ ℬ̃(L)2:

1. If 𝑏̃𝑢(𝑒) = (𝑋, 𝑋) then 𝑓𝑒 = 𝑓 is Morse function on all of 𝑋.

2. If 𝑏̃𝑢(𝑒) ∈ {(𝐿, 𝑋), (𝑋, 𝐿), (𝐿, 𝐿)} for 𝐿 ∈ L then 𝑓𝑒 = 𝑓 |𝐿 is a Morse function

on 𝐿 ∩ 𝑋.

3. Otherwise 𝑏̃𝑢(𝑒) = (𝐿, 𝐿′) for 𝐿, 𝐿′ ∈ L with 𝐿 ≠ 𝐿′ and 𝑓𝑒 is a Morse function

on the set of Floer trajectories of the Hamiltonian perturbation 𝑋𝐻Γ,𝝀 d𝑡 from

𝐿 to 𝐿′. Since 𝐿 and 𝐿′ are perturbed to meet transversely, this is a Morse

function on a discrete set and therefore is a vacuous constraint.

The notion of stability of 𝑃Γ,𝝀-perturbed pseudoholomorphic treed polygons is

unchanged (c.f. Definition 2.19), but in order that the moduli spaces we will construct

have the expected boundary strata, it will be necessary to treat the stabilizing divisors

themselves with some care.

Definition 4.5. A complete family of systems of stabilizing divisors for 𝜋 : 𝑋 → 𝑄 is

a choice of, for each finite collection L ⊂ obℱsec, a system of stabilizing divisors

DL = {𝐷L,𝜅}𝜅∈𝒦L for 𝜋 with respective activity functions 𝛼L,𝜅 (c.f. Definition 2.24),

such that in addition whenever 𝑞 ∈ 𝛼−1
L,𝜅([0,∞)) the divisor 𝐷L,𝜅 is stabilizing for the

entire family {𝐹𝑞} ∪ L.

We have the following analogue of Theorem 2.25.

Theorem 4.6. There exists a complete family of systems of stabilizing divisors for 𝜋 : 𝑋 → 𝑄.

Proof. The argument is same as in the proof of Theorem 2.25, recalling that Corol-

lary 2.22 holds for all finite families, and nothing that since our Hamiltonian per-
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turbations are supported away from all marked points, pseudoholomorphicity in a

neighborhood of each guarantees positivity of intersection with the applicable chosen

divisors. □

Thus fix a background complete family of systems of stabilizing divisors (DL)L⊂obℱsec .

Despite the choice of an entire family of stabilizing divisors, we will only need to work

with 𝑃Γ-perturbed pseudoholomorphic treed polygons 𝑢 : Δ → 𝑋 adapted to one

system DL at a time.

Definition 4.7. A pseudoholomorphic treed L-polygon 𝑢 : Δ → 𝑋 is adapted to DL

if 𝑢 satisfies Definition 2.29 (i.e. is adapted as a treed disk), with the exception that

disks 𝑣• ∈ Vert•(Δ)which have at least 3 boundary marked points and have boundary

components labeled (according to 𝑏̃𝑢) by both 𝐿 and 𝑋 need not meet a divisor in DL.

Perturbed pseudoholomorphic treed polygons are sufficiently general to model all

of the moduli spaces we will subsequently need to consider; first, we produce our

model of the Fukaya category ℱsec. Thus fix 𝐿− , 𝐿+ ∈ obℱsec. We denote by gen𝐿− ,𝐿+

the time 1 chords of the flow induced by the Hamiltonian 𝐻𝐿± chosen at the time we

selected our strip-like ends.

Definition 4.8. The morphism spaces of ℱsec are defined for all 𝐿, 𝐿′ ∈ obℱsec by

ℱsec(𝐿, 𝐿′) := Λ⟨gen𝐿,𝐿′⟩,

i.e. the Λ-module freely generated by the (perturbed) intersection points of 𝐿 and 𝐿′.

Definition 4.9. Let (Γ, 𝝀) be a labeled combinatorial type of treed disks with 𝑛 inputs.

A pseudoholomorphic treed L-polygon (spec)ification for the labeled type (Γ, 𝝀) is a

a spec (m, x, 𝜷) of pseudoholomorphic treed disks for which the generators x and

classes 𝜷 are compatible with the boundary labels of Definition 4.2. In other words,

we respectively have:
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• Write x = (𝑥0 , 𝑥1 , . . . , 𝑥𝑛). For each 1 ≤ 𝑖 ≤ 𝑛 denote the 𝑖th input vertex by

𝑣𝑖 ∈ Vert+(Δ) and write 𝑒𝑖 for the unique edge such that 𝑡(𝑒𝑖) = 𝑣𝑖 . Similarly, let

𝑒0 denote the root edge. The induced edge label function 𝑏̃ : Edge𝜕(Δ) → ℬ̃(L)
determined by 𝝀 satisfies 𝑏̃(𝑒𝑖) = 𝜆±𝑖 for all 0 ≤ 𝑖 ≤ 𝑛. We require that 𝑥𝑖 ∈
gen𝜆−𝑖 ,𝜆

+
𝑖

for each 0 ≤ 𝑖 ≤ 𝑛.

• Recall the induced boundary label function 𝑏̃ : 𝜋0(𝑆Δ − Joint(Δ)) → ℬ̃(L). For all

𝑣 ∈ Vert•(Γ) we require that the class 𝛽𝑣 belongs to 𝐻2(𝑋, 𝐵) for 𝐵𝑣 the union of

finitely many fibers of 𝜋 with 𝑏̃(𝑐) for all 𝑐 ∈ 𝜋0(𝑣 − Joint(Δ)).

A (𝑃Γ,𝝀)-perturbed pseudoholomorphic treed polygon 𝑢 : Δ → 𝑋 adapted to DL

obeys the spec (m, x, 𝜷) if:

• the map 𝑢 obeys (m, x, 𝜷) as in Definition 2.31, and

• the function 𝑏̃ : Edge𝜕(Δ) → (ℬ̃(L))2 is compatible with the actual boundary

component labels 𝑏𝑢 : 𝜋0(𝜕𝑆Δ − Joint(Δ)) → ℬ(L) as in Remark 4.1.

The moduli space of (𝑃Γ,𝝀)-perturbed pseudoholomorphic treed polygons is denoted

ℳ𝑃Γ,𝝀(m, x, 𝜷).

Because the input and output labels 𝑥𝑖 determined by a choice of x play different

algebraic roles depending on whether they label a generator associated to one or more

Lagrangian sections, or to the fibration𝜋 itself, we will generally distinguish the former

with labels 𝑦0 , 𝑦1 , . . . from the latter with labels 𝑥0 , 𝑥1 , . . . (consistent with the notation

of Chapters 2 and 3).

All of the boundary labels 𝝀 we will consider will be determined systematically

based on schematic diagrams corresponding to the particular Floer-theoretic oper-

ation in question. Since it is inconvenient to then continuously specify such data

componentwise, for notational expediency we make the following definition.
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Definition 4.10. For each tuple (𝐿0 , . . . , 𝐿𝑛) ⊂ L𝑛+1 the corresponding ℱsec-shaped

boundary labels 𝝀(𝐿𝑖)0≤𝑖≤𝑛 = (𝜆±𝑖 ) ∈
(ℬ̃(L)2)𝑛+1 are defined by specifying that 𝜆−0 = 𝐿𝑛 ,

𝜆+0 = 𝐿0, and for all 1 ≤ 𝑖 ≤ 𝑛 we have 𝜆−𝑖 = 𝐿𝑖−1 and 𝜆+𝑖 = 𝐿𝑖 .

Figure 4.2 schematically depicts a pseudoholomorphic treed polygon obeying a

spec (m, y, 𝜷)with y = (𝑦0 , 𝑦1 , 𝑦2) for a labeled type with ℱsec-shaped boundary labels

𝝀(𝐿0 ,𝐿1 ,𝐿2). It is precisely configurations of this kind which we will count in order to

define the composition maps in the Fukaya category (c.f. Definition 4.15).

Indeed, in order to systematically count configurations obeying specs with ℱsec-

shaped boundary labels, or the other boundary shapes which we will consider later,

we now turn our attention to establishing the appropriate generalizations of transver-

sality (c.f. Corollary 2.46) and compactness/the classification of boundary strata (c.f.

Theorem 3.8) for pseudoholomorphic treed polygons.

𝑝2

𝐿1
𝑝1

𝐿3

𝑝3

𝐿2

Figure 4.2: A schematic diagram of a pseudoholomorphic treed polygon obeying a
spec (m, y, 𝜷)with y = (𝑦0 , 𝑦1 , 𝑦2) for a labeled type with ℱsec-shaped boundary labels
𝝀(𝐿0 ,𝐿1 ,𝐿2), belonging to the moduli spaceℳP,2(𝝀(𝐿0 ,𝐿1 ,𝐿2) , y)0 and therefore contributing
to the composition law in the Fukaya category (c.f. Definition 4.15).
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4.2 Transversality and compactness

Essentially the same arguments as in Section 2.4 produce regular moduli spaces of

(suitably constrained) pseudoholomorphic treed polygons—we will just describe the

necessary modifications. First, we must slightly alter the space Map𝑘,𝑝
Δ,𝝀(m, x, 𝜷) of

class 𝑊 𝑘,𝑝 maps obeying the conditions of Definition 4.4 (with the exception of the

perturbed pseudoholomorphic and Morse gradient flow equations)—the issue is that

the boundary label 𝑏𝑢 : 𝜋0(𝑆Δ − Joint(Δ)) → ℬ(L) of some 𝑢 ∈ Map𝑘,𝑝
Δ,𝝀(m, x, 𝜷) may

suddenly change as we pass around 𝜕𝑆Δ over a boundary joint. The remedy, as in

[VWX20], is to choose a decay constant 𝛿 > 0 sufficiently small and restrict to the

subclass of maps which are, near a sufficiently small neighborhood of any joint over

which the boundary label changes, given by a constant plus the exponential of a vector

field of class𝑊 𝑘,𝑝,𝛿 (i.e. are of class𝑊 𝑘,𝑝,𝛿 for a cylindrical-type metric on the domain).

Definition 4.11. A perturbation system P = {𝑃Γ,𝝀}(Γ,𝝀)∈Γ for perturbed treed L-polygons

works if:

• For each spec (m, x, 𝜷) of labeled type (Γ, 𝝀) ∈ Γ we have that the moduli space

ℳ𝑃Γ,𝝀(m, x, 𝜷) equipped with its natural topology is a smooth manifold.

• For each (Γ, 𝝀) ∈ Γ, the uncrowding Γ𝐺 of Γ with 𝐺 ⊂ Edge◦(Δ) contained within

some maximal ghost sphere tree in 𝑢 satisfies (Γ𝐺 , 𝝀) ∈ Γ and the perturbation

datum 𝑃Γ𝐺 ,𝝀 is induced by 𝑃Γ,𝝀 (in the sense of Definition 2.42).

• Each perturbation datum 𝑃Γ,𝝀 is compatible with DL.

Defining the subcollection 𝒫✓Γ (P) ⊂ 𝒫Γ (P) of working L-perturbation data as be-

fore (as a subset of an honest Banach manifold), we have the following analogue of

Theorem 2.45 and its immediate corollary.

Theorem 4.12. For each combinatorial type Γ and working L-perturbation system P the subset

𝒫✓Γ (P) ⊂ 𝒫Γ (P) is comeager.
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Proof. We just explain the necessary modification of the proof of Theorem 2.45; the

situation is that we again must verify that an arbitrary element 𝜂𝑆⊕𝜂𝑇 of the orthogonal

complement of the image of the linearization of the section 𝑑𝑆 ⊕ 𝑑𝑇 (now with the

addition of a Hamiltonian perturbation term) at some

((𝐽Γ , 𝑓Γ , 𝐻Γ,𝝀),𝜓 : Δ′ � Δ, 𝑢 : Δ→ 𝑋) ∈ 𝒫 𝑙
Γ ×ℳΓ,Δ ×Map𝑘,𝑝,𝛿

Δ,𝝀 (m, x, 𝜷)

in the zero locus of 𝑑𝑆 ⊕ 𝑑𝑇 is identically zero.

Recall that, by definition the Hamiltonian perturbation 𝐻Γ,𝝀 furnished by any L-

perturbation datum 𝑃Γ is zero on all sphere components. Therefore precisely the same

argument as in the treed disk case shows that 𝜂𝑆 and 𝜂𝑇 are zero respectively on 𝐿𝑒 ⊂ Δ

for all edges 𝑒 ∈ Edge(Δ) and on all sphere components 𝑣 ∈ Vert◦(Δ) independent of

whether 𝑢 is constant there.

If 𝑢 is nonconstant on a disk component 𝑣 ∈ Vert•(Δ) then since 𝒮⊚• ,𝐽
Δ meets 𝑣

in an open set disjoint from the support 𝒮⊚• ,𝐻
Δ of the Hamiltonian perturbation we

again conclude 𝜂𝑆|𝑣 = 0. Our previous methods fail when 𝑢 is constant on a disk

component 𝑣 with Lagrangian section boundary, but in precisely this situation 𝑣 must

meet 𝒮⊚• ,𝐻
Δ in an open set (on which the Hamiltonian perturbation may be varied), and

pseudoholomorphicity implies 𝜂𝑆|𝑣 = 0 identically on the entirety of 𝑣 once again. □

Corollary 4.13. There exists a complete working L-perturbation system P.

Proof. The proof is identical to the proof of Corollary 2.46. □

As the direct analogy of (3.2.I) we define

ℳP,𝑛(𝝀, x) :=
⋃

𝑛(Γ) = 𝑛 and Γ is stable
and minimally degenerate

⋃
(m, x, 𝜷) is a spec

for (Γ, 𝝀)

ℳ𝑃Γ,𝝀(m, x, 𝜷).

Let ℳP,𝑛(𝝀, x)𝑑 ⊂ ℳP,𝑛(𝝀, x) be the subspace of expected dimension 𝑑, and let
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ℳP,𝑛(𝝀, x)𝑑 be its natural compactification. Letℳ≤𝐸P,𝑛(𝝀, x) andℳ≤𝐸P,𝑛(𝝀, x) be the cor-

responding subspaces with energy at most 𝐸.

All of the operations on specs (m, x, 𝜷) induced by the domain operations (2.2.a)–

(2.2.d) preserve the boundary labels 𝝀. Therefore Theorem 3.9 applies (substituting

only the correct notion of spec for pseudoholomorphic treed L-polygons), and we

immediately obtain the following generalization of Theorem 3.8.

Theorem 4.14. Let P be a complete working L-perturbation system. For all x ∈ (genL 𝑓 )𝑛+1

and compatible boundary labels 𝝀 ∈ (ℬ̃(L)2)𝑛+1 we have that:

(4.14.a) for each 𝐸 > 0 the spacesℳ≤𝐸P,𝑛(𝝀, x)0 andℳ≤𝐸P,𝑛(𝝀, x)1 are compact, and

(4.14.b) the boundary ofℳ≤𝐸P,𝑛(𝝀, x)1 is the (disjoint) union of all

ℳ𝑃Γ′ ,𝝀′ (m′, x′, 𝜷′) taken over all strata ℳ𝑃Γ,𝝀(m, x, 𝜷) ⊂ ℳ≤𝐸P,𝑛(𝝀, x)1 ,

where (m′, x′, 𝜷′) is a spec for the type (Γ′, 𝝀′) obtained from the spec (m, x, 𝜷) for (Γ, 𝝀)
by a single application of the operation (2.2.a) or (2.2.d).

As a first application of these constructions, we define the familiar composition

law in the Fukaya category.

Definition 4.15. For 𝐿0 , . . . , 𝐿𝑛 ∈ obℱsec define a map

𝜇𝑛 : ℱsec(𝐿0 , 𝐿1) ⊗ · · · ⊗ ℱsec(𝐿𝑛−1 , 𝐿𝑛) → ℱsec(𝐿0 , 𝐿𝑛)[2 − 𝑛]

on each y = (𝑦1 , . . . , 𝑦𝑛) by the assignment

𝜇𝑛(y) := (−1)♥
∑

𝑦0∈gen𝐿0 ,𝐿𝑛
𝑓

[𝑢]∈ℳP,𝑛(𝝀(𝐿0 ,...,𝐿𝑛 ) ,(𝑦0 ,y))0

𝑜([𝑢])∏
𝜅∈𝒦L

#Mark𝜅(Γ([𝑢]))!
· 𝑇𝜔(𝑢)𝑦0 (4.2.I)

with ♥ = 𝑛 +∑𝑛
𝑘=1 𝑘𝐼(𝑦𝑘).
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Theorem 4.16. Formula (4.2.I) endows ℱsec with the structure of an 𝐴∞-category [Sei08a],

in that for each 𝑛 ≥ 0 and homogeneous elements 𝑎𝑖 ∈ ℱsec(𝐿𝑖−1 , 𝐿𝑖) of respective degrees |𝑎𝑖|
we have the 𝐴∞-identity

0 =
∑
𝑗+𝑘≤𝑛
(−1)♥𝜇𝑛−𝑘+1(𝑎1 , . . . , 𝑎 𝑗 , 𝜇𝑘(𝑎 𝑗+1 , . . . , 𝑎 𝑗+𝑘), 𝑎 𝑗+𝑘+1 , . . . , 𝑎𝑛), (4.2.II)

with ♥ = (−1)𝑗+
∑𝑗

𝑖=1|𝑎𝑖 |.

Proof. As in the proof of Theorem 3.11, the claim follows from combining Theorem 4.14

with the fact that all operations on L-polygon specs induced by (2.2.a)–(2.2.d) preserve

boundary labels. □

Remark 4.17. Via Morse-theoretic constructions for a single Lagrangian 𝐿 Charest–

Woodward [CW22] produce a strictly unital model for the algebra ℱsec(𝐿, 𝐿) which is

essentially a special case of our machinery and is thereby trivially compatible. With

minimal effort one may substitute this model ℱsec(𝐿, 𝐿) above and below, and produce

a strictly unital 𝐴∞-category ℱsec together with a strictly unital family Floer functor.

4.3 Fukaya mirror modules

In order to define the module 𝒞(𝐿) associated to each 𝐿 ∈ obℱsec by the family Floer

functor we introduce the notion of an “anchor path”. For this purpose, choose a

distinguished section 𝐿∗ ∈ obℱsec selecting a basepoint of each fiber of 𝜋 : 𝑋 → 𝑄.

Definition 4.18. An anchor [𝛾] on 𝐿 ∈ obℱsec is a homotopy class of paths represented

by 𝛾 : [0, 1] → 𝐹𝑞 , contained in a single fiber 𝐹𝑞 and constrained so that

• 𝛾(0) ∈ crit 𝑓 |𝐿 is a critical point of 𝑓 restricted to 𝐿 and

• 𝛾(1) ∈ 𝐿∗ is the basepoint of 𝐹𝑞 .
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Denote the collection of all anchors on 𝐿 by gen𝐿→𝐿∗ 𝑓 , and when the Lagrangian 𝐿 to

which 𝑥 ∈ crit 𝑓 |𝐿 belongs is understood, write gen𝑥→𝐿∗ 𝑓 ⊂ gen𝐿→𝐿∗ 𝑓 for the subset of

anchors [𝛾] on 𝐿 at 𝑥 (i.e. for which 𝛾(0) = 𝑥). Figure 4.3 depicts a schematic example.

𝑞𝑝

𝑄

[𝛾3][𝛾2][𝛾1]

Figure 4.3: A schematic diagram depicting three distinct anchors on the same La-
grangian section 𝐿 ∈ obℱsec.

As a building block toward the Fukaya mirror module 𝒞(𝐿) to 𝐿, observe that

for any such 𝑥 ∈ crit 𝑓 |𝐿 we may form the free Λ-module 𝑀𝐿,𝑥 := .Λ⟨gen𝑥→𝐿∗ 𝑓 ⟩.
Now, 𝑀𝐿,𝑥 carries a natural action of 𝐻1(𝐹𝜋(𝑥)) arising from the fact that each formal

difference [𝛾] − [𝛾′] of elements of gen𝑥→𝐿∗ 𝑓 determines an element of 𝐻1(𝐹𝜋(𝑥)) by

concatenating 𝛾 with the reverse of 𝛾′. This action extends to a Λ-linear action on

𝑀𝐿,𝑥 , and as in Section 3.1 completes to a free rank 1 𝒪an|𝜃𝜋(𝑥)-module x𝑀𝐿,𝑥 .

We now define the family Floer functor on 𝐿 ∈ obℱsec by letting 𝒞(𝐿) be

𝒞(𝐿) :=
⊕

𝑥∈gen 𝑓 |𝐿
x𝑀𝐿,𝑥 .
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In order to furnish 𝒞(𝐿)with the structure of an 𝐴∞-module, we must provide module

action maps

⊳𝑛 : 𝒞(𝐿) ⊗ 𝒜⊗𝑛 → 𝒞(𝐿),

and for this purpose we define a new class of boundary shapes.

Definition 4.19. For each tuple (𝐿0 , . . . , 𝐿𝑛) ⊂ L𝑛+1 the corresponding ℱsec-shaped

boundary labels 𝝀(𝐿𝑖)0≤𝑖≤𝑛 = (𝜆±𝑖 ) ∈
(ℬ̃(L)2)𝑛+1 are defined by specifying that 𝜆−0 = 𝐿𝑛 ,

𝜆+0 = 𝐿0, and for all 1 ≤ 𝑖 ≤ 𝑛 we have 𝜆−𝑖 = 𝐿𝑖−1 and 𝜆+𝑖 = 𝐿𝑖 .

Definition 4.20. For each 𝐿 ∈ L and 𝑛 ∈ N the corresponding module-shaped bound-

ary labels 𝝀𝐿|𝑛 = (𝜆±𝑖 ) ∈
(ℬ̃(L)2)𝑛+2 are defined by (𝜆−0 ,𝜆+0 ) = (𝜆−1 ,𝜆+1 ) = (𝐿, 𝑋) and

(𝜆−𝑖 ,𝜆+𝑖 ) = (𝑋, 𝑋) for all 2 ≤ 𝑖 ≤ 𝑛 + 2. A schematic configuration of this type is

depicted in Figure 4.4.

Roughly speaking, configurations of the type depicted in Figure 4.4 contribute to

the coefficient of 𝑦0 in 𝑦1 ⊳2 (𝑥1 , 𝑥2). However, 𝑦0 and 𝑦1 as specified are not anchors;

in general a pseudoholomorphic treed disk 𝑢 : Δ → 𝑋 of spec (m, (𝑦0 , 𝑦1 , x), 𝜷) for

the labeled type (Γ, 𝝀) induces a canonical map from anchors [𝛾] ∈ gen𝐿→𝐿∗ 𝑓 with

𝛾(0) = 𝑦1 to anchors [𝛾′]with 𝛾(0) = 𝑦0, as we now describe.

Remark 4.21. Let 𝑢 : Δ → 𝑋 be a pseudoholomorphic treed polygon of spec (m, x, 𝜷)
for (Γ, 𝝀). The image of the tree part 𝑇Δ ⊂ Δ under 𝜋 ◦ 𝑢 is a tree consisting of the

union2 of Morse gradient flow trajectories in 𝑄.

Suppose that an input vertex 𝑣+𝑖 ∈ Vert+(Δ), numbered with respect to the canonical

ordering, is such that 𝑢(𝑣+𝑖 ) and 𝑢(𝑣0) lie in the same connected component of 𝑢(𝑇Δ).
In this case there is a (unique) homotopy class of paths from 𝜋(𝑥𝑖) to 𝜋(𝑥0) contained

in (𝜋 ◦ 𝑢)(𝑇Δ) ⊂ 𝑄, which we call the base path associated to the input 𝑣+𝑖 . Denote a choice

of representing path by 𝜓𝑢
𝑖 : [0, 1] → 𝑄.

2This is precisely a disjoint union of broken Morse gradient flow trees in 𝑄 in the sense of Theorem 1.5.
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𝑥1

𝑥2

𝑦1

𝑦0

𝐿

Figure 4.4: A schematic diagram of a pseudoholomorphic treed polygon obeying a
spec (m, x, 𝜷) for a labeled type with module-shaped boundary labels 𝝀𝐿|2, belonging
to the moduli space ℳP,3(𝝀𝐿|2 , x)0 and therefore contributing to the to the module
action map for 𝒞(𝐿) (c.f. Definition 4.22).

Each of the shapes of boundary labels we will consider have the following property:

whenever we have that precisely one of 𝜆−𝑖 = 𝑋 or 𝜆+𝑖 = 𝑋 holds, then 𝑢(𝑣+𝑖 ) and 𝑢(𝑣0)
lie in the same connected component of 𝑢(𝑇Δ). Moreover, in this case the path 𝜓𝑢

𝑖

admits a unique lift, up to homotopy in 𝑢(𝜕𝑆Δ ∪ 𝑇Δ), to a path p𝜓𝑢
𝑖 : [0, 1] → 𝑋 that

traverses only components 𝑐 ∈ 𝜋0(𝜕𝑆Δ − Joint(Δ)) labeled by a fiber 𝑏𝑢(𝑐) = 𝐹𝑞 of

𝜋 : 𝑋 → 𝑄. A schematic diagram is depicted in Figure 4.5.

Thus given a pseudoholomorphic treed polygon 𝑢 : Δ → 𝑋 obeying a spec

(m, (𝑦0 , 𝑦1 , x), 𝜷) with boundary labels of module type and an anchor [𝛾] ∈ gen𝐿→𝐿∗ 𝑓

with 𝛾(0) = 𝑦1 we canonically obtain an anchor [𝛾′] by parallel transport of 𝛾 along

the path p𝜓𝑢
1 in 𝑄. This parallel transport sweeps out a rectangle 𝛼1 bounded by 𝐿∗ and
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𝑥1

𝑥2

𝑥0

𝜋(𝑥1)

𝜋(𝑥2)
𝜋(𝑥0)

𝑄 𝜓𝑢
1

Figure 4.5: A schematic diagram of a base path associated to a pseudoholomorphic
treed polygon with multiple inputs.

the image of p𝜓𝑢
1 of symplectic area 𝜔(𝛼1) (as depicted in Figure 4.6). As a convenient

shorthand, we define

[𝛾] ⊳ p𝜓𝑢
1 := 𝑇𝜔(𝛼)[𝛾′].

Definition 4.22. For 𝐿 ∈ obℱsec and 𝑛 ≥ 1 define a map

⊳𝑛−1 : 𝒞(𝐿) ⊗ 𝒜⊗𝑛−1 → 𝒞(𝐿)[2 − 𝑛]

on each [𝛾] ∈ gen𝐿→𝐿∗ 𝑓 and x = (𝑥1 , . . . , 𝑥𝑛−1) ∈ (gen 𝑓 )𝑛−1 by the assignment

[𝛾] ⊳𝑛−1 x := (−1)♥
∑

𝑦0∈gen 𝑓 |𝐿
[𝑢]∈ℳP,𝑛(𝝀𝐿|𝑛 ,(𝑦0 ,𝛾(0),x))0

𝑜([𝑢])∏
𝜅∈𝒦L

#Mark𝜅(Γ([𝑢]))!
· 𝑧𝜷([𝑢])([𝛾] ⊳ p𝜓𝑢

1 ) (4.3.I)

with ♥ = 𝐼(𝛾(0)) +∑𝑛−1
𝑘=1 𝑘𝐼(𝑥𝑖).
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𝑞𝑝

𝑄
𝜓𝑢

1

[𝛾]

Figure 4.6: A schematic diagram of the symplectic area in 𝑋 swept out by the parallel
transport of the anchor [𝛾] along p𝜓𝑢

1 .

Recall that this operation essentially counts treed polygon configurations such as

those schematically depicted in Figure 4.4.

Theorem 4.23. Suppose that for some 𝜔-compatible 𝐽′ the section 𝐿 does not bound noncon-

stant 𝐽′-holomorphic disks. Formula (4.3.I) endows 𝒞(𝐿) with the structure of an 𝐴∞-module

for𝒜, in that for each 𝑛 ≥ 1 and homogeneous elements 𝑚 ∈ 𝒞(𝐿) and 𝑎𝑖 ∈ 𝒜 of respective

degrees |𝑎𝑖| we have the 𝐴∞-identity

∑
𝑗+𝑘≤𝑛−1

(−1)♥𝑚 ⊳𝑛−𝑘 (𝑎1 , . . . , 𝑎 𝑗 , 𝜇𝑘(𝑎 𝑗+1 , . . . , 𝑎 𝑗+𝑘), 𝑎 𝑗+𝑘+1 , . . . , 𝑎𝑛−1)

=
∑
𝑗≤𝑛−1

(
𝑚 ⊳𝑗 (𝑎1 , . . . , 𝑎 𝑗)

)
⊳𝑛−𝑗−1 (𝑎 𝑗+1 , . . . , 𝑎𝑛−1) (4.3.II)

with ♥ = (−1)1+𝑗+
∑𝑗

𝑖=1|𝑎𝑖 |.

Proof. Once again, we appeal to Theorem 4.14; we consider all possible results of

applying the operation (2.2.a) to a spec (m, x, 𝜷) for a labeled type (Γ, 𝝀𝐿|𝑛) contributing
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to ℳP,𝑛(𝝀𝐿|𝑛 , x)1. Terms on the left hand side of (4.3.II) correspond precisely those

obtained by an application of the breaking operation (2.2.a) to an edge 𝑒 ∈ Edge𝜕(Γ)
with label 𝑏̃(𝑒) = (𝑋, 𝑋), while terms on the right hand side arise whenever 𝑏̃(𝑒) =
(𝐿, 𝑋). All such breakings are enumerated above, and by the consistency relation which

𝑏̃ must obey along all boundary edges, given the boundary labels𝝀𝐿|𝑛 of module-shape

the only other possible edge label is 𝑏̃(𝑒) = (𝐿, 𝐿). By the hypothesis that 𝐿 does not

bound disks of positive symplectic area the claim now follows up to a careful check of

orientations signs as in [WW15; MWW18]. □

Remark 4.24. In general, without the hypothesis that 𝐿 ∈ obℱsec does not bound disks

of positive symplectic area, the action map (4.3.I) equips 𝒞(𝐿) with the structure of

a curved 𝒜-module. Indeed, there is a natural (ℱsec(𝐿, 𝐿),𝒜)-bimodule structure on

𝒞(𝐿) (independent of any hypothesis). From this perspective one sees that curvature of

ℱsec(𝐿, 𝐿) prevents us from restricting the bimodule structure yielding an honest right

𝒜-module structure, since the corresponding 𝐴∞-module relation no longer holds

on-the-nose as a special case of the 𝐴∞-bimodule relation.

4.4 Functoriality and invariance

Having defined the family Floer functor on objects, we next specify its action on com-

posable tuples of morphisms. This necessitates the definition of one final boundary

shape.

Definition 4.25. For each 𝐿0 , . . . , 𝐿𝑛 ∈ L and 𝑚 ∈ N the corresponding morphism-shaped

boundary labels 𝝀(𝐿0 ,...,𝐿𝑛)|𝑚 = (𝜆±𝑖 ) ∈
(ℬ̃(L)2)𝑛+𝑚+2 are defined by (𝜆−0 ,𝜆+0 ) = (𝐿𝑛 , 𝑋),

(𝜆−𝑖 ,𝜆+𝑖 ) = (𝐿𝑛−𝑖 , 𝐿𝑛−𝑖+1) for all 1 ≤ 𝑖 ≤ 𝑛, (𝜆−𝑛+1 ,𝜆
+
𝑛+1) = (𝐿0 , 𝑋), and (𝜆−𝑛+𝑖 ,𝜆+𝑛+1+𝑖) =

(𝑋, 𝑋) for all 1 ≤ 𝑖 ≤ 𝑚. A schematic configuration of this type is depicted in Figure 4.7.
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𝑥1

𝑥2

𝑦1

𝑦0

𝑝

𝐿0

𝐿1

Figure 4.7: A schematic diagram of a pseudoholomorphic treed polygon obeying
a spec (m, x, 𝜷) for a labeled type with morphism-shaped boundary labels 𝝀(𝐿0 ,𝐿1)|2,
belonging to the moduli space ℳP,4(𝝀(𝐿0 ,𝐿1)|2 , x)0 and therefore contributing to the
morphism maps of the family Floer functor (c.f. Definition 4.26).

Definition 4.26. For 𝐿0 , . . . , 𝐿𝑛 ∈ L, 𝑝𝑖 ∈ ℱsec(𝐿𝑖−1 , 𝐿𝑖) for all 1 ≤ 𝑖 ≤ 𝑛, and 𝑛′ ≥ 1

define a map

𝒞 𝑛(𝑝1 , . . . , 𝑝𝑛)𝑛′−1 : 𝒞(𝐿0) ⊗ 𝒜⊗𝑛′−1 → 𝒞(𝐿′)[1 − 𝑛 − 𝑛′]

on each [𝛾] ∈ gen𝐿0→𝐿∗ 𝑓 and x = (𝑥1 , . . . , 𝑥𝑛′−1) ∈ (gen 𝑓 )𝑛−1 by the assignment

𝒞 𝑛(𝑝1 , . . . , 𝑝𝑛)𝑛′−1([𝛾], x) := (−1)♥
∑

𝑦0∈gen 𝑓 |𝐿𝑛
[𝑢]∈ℳP,𝑛(𝝀,(𝑦0 ,𝑝1 ,...,𝑝𝑛 ,𝛾(0),x))0

𝑜([𝑢])∏
𝜅∈𝒦L

#Mark𝜅(Γ([𝑢]))!
· 𝑧𝜷([𝑢])([𝛾] ⊳ p𝜓𝑢

1 )

with ♥ = 𝐼(𝛾(0)) +∑𝑛−1
𝑘=1 𝑘𝐼(𝑥𝑖) and 𝝀 = 𝝀(𝐿0 ,...,𝐿𝑛)|𝑛′−1.
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Theorem 4.27. Formula (4.26) defines components 𝒞 𝑛 which assemble into an 𝐴∞-functor

𝒞 : ℱsec → mod-𝒜, in that for each 𝑛 ≥ 0 and homogeneous elements 𝑏𝑖 ∈ ℱsec(𝐿𝑖−1 , 𝐿𝑖) for

all 1 ≤ 𝑖 ≤ 𝑛 of respective degrees |𝑏𝑖| we have the identity

∑
𝑗+𝑘≤𝑛
(−1)♥𝒞 𝑛−𝑘+1(𝑏1 , . . . , 𝑏 𝑗 , 𝜇𝑘(𝑏 𝑗+1 , . . . , 𝑏 𝑗+𝑘), 𝑏 𝑗+𝑘+1 , . . . , 𝑏𝑛)

=
∑

𝑖1+...+𝑖𝑑=𝑛
◦𝑑(𝒞 𝑖1(𝑏1 , . . . , 𝑏𝑖1), . . . ,𝒞 𝑖𝑑 (𝑏𝑖1+...+𝑖𝑑−1+1 , . . . , 𝑏𝑛)) (4.4.I)

with ♥ = (−1)𝑗+
∑𝑗

𝑖=1|𝑏𝑖 | and ◦𝑑 denoting the 𝑑-ary composition of morphisms in mod-𝒜.

Proof. The equation (4.4.I) is an equality of pre-𝒜-module morphisms; thus fix homo-

geneous elements 𝑚 ∈ 𝒞(𝐿0) and 𝑎𝑖 ∈ 𝒜 for 1 ≤ 𝑖 ≤ 𝑛′ of respective degrees |𝑚| and

|𝑎𝑖|. Unrolling the definition of the composition in mod-𝒜, since ◦𝑘 = 0 identically for

all 𝑘 > 2 we have the equivalent identity [Sei08b, Subsection 1j]

∑
𝑗+𝑘≤𝑛
(−1)♥𝒞 𝑛−𝑘+1(𝑏1 , . . . , 𝑏 𝑗 , 𝜇𝑘(𝑏 𝑗+1 , . . . , 𝑏 𝑗+𝑘), 𝑏 𝑗+𝑘+1 , . . . , 𝑏𝑛)

= ◦1(𝒞 𝑛(𝑏1 , . . . , 𝑏𝑛)) +
∑
𝑗≤𝑛
◦2(𝒞 𝑗(𝑏1 , . . . , 𝑏 𝑗),𝒞 𝑛−𝑗(𝑏 𝑗+1 , . . . , 𝑏𝑛)),

or explicitly (acting on the tuple (𝑚, 𝑎1 , . . . , 𝑎𝑛′))

∑
𝑗+𝑘≤𝑛
(−1)♥𝒞 𝑛−𝑘+1(𝑏1 , . . . , 𝑏 𝑗 , 𝜇𝑘(𝑏 𝑗+1 , . . . , 𝑏 𝑗+𝑘), 𝑏 𝑗+𝑘+1 , . . . , 𝑏𝑛)𝑛′(𝑚, 𝑎1 , . . . , 𝑎𝑛′)

= ◦1(𝒞 𝑛(𝑏1 , . . . , 𝑏𝑛))𝑛′(𝑚, 𝑎1 , . . . , 𝑎𝑛′)

+
∑
𝑗≤𝑛
◦2(𝒞 𝑗(𝑏1 , . . . , 𝑏 𝑗),𝒞 𝑛−𝑗(𝑏 𝑗+1 , . . . , 𝑏𝑛))𝑛′(𝑚, 𝑎1 , . . . , 𝑎𝑛′).
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Now, by definition we have

◦1 (𝒞 𝑛(𝑏1 , . . . , 𝑏𝑛))𝑛′(𝑚, 𝑎1 , . . . , 𝑎𝑛′)

=
∑

𝑗+𝑘≤𝑛′
𝒞 𝑛(𝑏1 , . . . , 𝑏𝑛)𝑛′−𝑘+1(𝑚, 𝑎1 , . . . , 𝑎 𝑗 , 𝜇𝑘(𝑎 𝑗+1 , . . . , 𝑎 𝑗+𝑘), 𝑎 𝑗+𝑘+1 , . . . , 𝑎𝑛′)

+
∑
𝑗≤𝑛′
(𝒞 𝑛(𝑏1 , . . . , 𝑏𝑛)𝑗(𝑚, 𝑎1 , . . . , 𝑎 𝑗)) ⊳𝑛′−𝑗 (𝑎 𝑗+1 , . . . , 𝑎𝑛′)

+
∑
𝑗≤𝑛′
𝒞 𝑛(𝑏1 , . . . , 𝑏𝑛)𝑛′−𝑗(𝑚 ⊳𝑗 (𝑎1 , . . . , 𝑎 𝑗), 𝑎 𝑗+1 , . . . , 𝑎𝑛′)

and

∑
𝑗≤𝑛
◦2(𝒞 𝑗(𝑏1 , . . . , 𝑏 𝑗),𝒞 𝑛−𝑗(𝑏 𝑗+1 , . . . , 𝑏𝑛))𝑛′(𝑚, 𝑎1 , . . . , 𝑎𝑛′)

=
∑
𝑗≤𝑛

∑
𝑘≤𝑛′
𝒞 𝑛−𝑗(𝑏 𝑗+1 , . . . , 𝑏𝑛)𝑛′−𝑘(𝒞 𝑗(𝑏1 , . . . , 𝑏 𝑗)𝑘(𝑚, 𝑎1 , . . . , 𝑎𝑘), 𝑎𝑘+1 , . . . , 𝑎𝑛′).

In summary, we must verify that all of the terms of the five sums

∑
𝑗+𝑘≤𝑛
(−1)♥𝒞 𝑛−𝑘+1(𝑏1 , . . . , 𝑏 𝑗 , 𝜇𝑘(𝑏 𝑗+1 , . . . , 𝑏 𝑗+𝑘), 𝑏 𝑗+𝑘+1 , . . . , 𝑏𝑛)𝑛′(𝑚, 𝑎1 , . . . , 𝑎𝑛′)

=
∑
𝑗≤𝑛

∑
𝑘≤𝑛′
𝒞 𝑛−𝑗(𝑏 𝑗+1 , . . . , 𝑏𝑛)𝑛′−𝑘(𝒞 𝑗(𝑏1 , . . . , 𝑏 𝑗)𝑘(𝑚, 𝑎1 , . . . , 𝑎𝑘), 𝑎𝑘+1 , . . . , 𝑎𝑛′)

+
∑

𝑗+𝑘≤𝑛′
𝒞 𝑛(𝑏1 , . . . , 𝑏𝑛)𝑛′−𝑘+1(𝑚, 𝑎1 , . . . , 𝑎 𝑗 , 𝜇𝑘(𝑎 𝑗+1 , . . . , 𝑎 𝑗+𝑘), 𝑎 𝑗+𝑘+1 , . . . , 𝑎𝑛′)

+
∑
𝑗≤𝑛′
(𝒞 𝑛(𝑏1 , . . . , 𝑏𝑛)𝑗(𝑚, 𝑎1 , . . . , 𝑎 𝑗)) ⊳𝑛′−𝑗 (𝑎 𝑗+1 , . . . , 𝑎𝑛′)

+
∑
𝑗≤𝑛′
𝒞 𝑛(𝑏1 , . . . , 𝑏𝑛)𝑛′−𝑗(𝑚 ⊳𝑗 (𝑎1 , . . . , 𝑎 𝑗), 𝑎 𝑗+1 , . . . , 𝑎𝑛′) (4.4.II)

are accounted for.

As in the proof of Theorem 4.23, each sum in (4.4.II) corresponds to a family of pos-

sible breakings (i.e. the operation (2.2.a)) on (m, x, 𝜷) for a labeled type (Γ, 𝝀(𝐿0 ,...,𝐿𝑛)|𝑛′).
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In each case an edge 𝑒 ∈ Edge𝜕(Γ) which breaks at a boundary stratum may have

possible boundary labels 𝑏̃(𝑒) = (𝑋, 𝑋), 𝑏̃(𝑒) = (𝐿𝑖 , 𝑋), and 𝑏̃(𝑒) = (𝐿𝑖 , 𝐿𝑗).
The second sum in the right hand side of (4.4.II) exactly account for all possible

ways edges labeled with 𝑏̃(𝑒) = (𝑋, 𝑋) can break, thus introducing an intermediary

multiplication in𝒜. All possible ways edges labeled with 𝑏̃(𝑒) = (𝐿𝑖 , 𝑋) can break are

accounted for by the first, third, and fourth terms of the right hand side of (4.4.II); the

module operations ⊳ arise precisely when 𝑖 = 0 (for the fourth sum) and when 𝑖 = 𝑛 (the

third sum). Finally, the sum on the left hand side of (4.4.II) similarly accounts for all

possible breaking of edges with label 𝑏̃(𝑒) = (𝐿𝑖 , 𝐿𝑗), thus introducing an intermediary

multiplication in ℱsec. This completes the proof. □

Remark 4.28. Up until this point we have dealt exclusively with a fixed finite collection

L ⊂ obℱsec of possible Lagrangian section boundary labels, and hence have con-

structed 𝐴∞-operations of various kinds within the corresponding universe of such.

All of our constructions admit a natural extension to arbitrary countable families of

sections L. We explain two possible approaches which encode the same idea via an

algebraic or a geometric strategy.

From the algebraic perspective, on one hand we have the Morse–Fukaya algebra

𝒜 as defined in Chapter 3 (independent of any choice of finite family L). On the other

hand, after fixing such a family L in Chapter 4 we essentially constructed an algebra

𝒜L with defining choices conveniently compatible with L and subsequently produced

𝒜L-modules. Allowing the finite family L to vary, for each finite L′ containing L we

may with little effort inductively construct𝒜L′ making sure that our defining choices

yield that there is a refinement morphism 𝑟L,L′ : 𝒜L → 𝒜L′ as in Section 3.4. Each

such map induces a restriction functor 𝑟∗L,L′ : mod-𝒜L′ → mod-𝒜L. Functor 𝒞 on any

countable family may therefore be computed as a colimit over the poset of its countable

subsets.

The second possible approach geometrically implements the changing of divisors
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in the moduli spaces we consider all at once, at the price of an equivalence relation

identifying pseudoholomorphic treed polygons up to the presence of marked points

by inactive divisors. By measuring the total distance (according to the lengths of Morse

trajectories) of each disk component from the closest copy of each Lagrangian section

boundary label 𝐿 (in every other component in the tree), the stabilizing divisor activity

weights may be modulated so that components which are infinitely far away do not

consider one another’s divisors. Essentially, the refinement morphisms 𝑟L,L′ have been

integrated into the moduli spaces themselves, and we swap out stabilizing data as we

drift further along Morse trajectories.
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