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» One then produces a dual torus fibration
n': XY —Q

via a geometric recipe.

» The difficulty is that © may have singular fibers, and the
construction of X" must be deformed accordingly.

» On the other hand, HMS asserts

Fuk(X) = “DP Coh(X")".
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> The space X, comes equipped with a comparison functor
which can be used to (try to) prove HMS.
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> We take a Morse-theoretic approach; pick a suitable Morse
function f on X.

Theorem

There is a curved Ac-functor

C: ﬁec(n/f) - mOd'ﬂ(n/f)~

» In other words, a functor

Fukaya category of As-modules for the
Lagrangian sections of 7 ~~ | Morse-Fukaya algebra of 7t -



1. The Morse-Fukaya algebra A

» This is an A-algebra; for a single Lagrangian is due to
Charest-Woodward, being in turn based on the ideas of
Cornea-Lalonde and Fukaya—Oh—-Ohta-Ono.

» Associated to a Lagrangian L C X and choice of Morse
function f : L — Riis

AL, f) = Acrit f),

graded by Morse index mod 2.
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» This is an A-algebra; for a single Lagrangian is due to
Charest-Woodward, being in turn based on the ideas of
Cornea-Lalonde and Fukaya—Oh—-Ohta-Ono.

» Associated to a Lagrangian L C X and choice of Morse
function f : L — Riis

AL, f) = Acrit f),

graded by Morse index mod 2.

» This algebra is equipped with a family of structure maps
pt: A% — A2 - d],

which we now define.
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u:A— X

from decorated domains A inductively built from the disk
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1. The Morse-Fukaya algebra A

» An example treed disk domain:

» Each edge e is attached interior-to-interior or
boundary-to-boundary, and has a length I(e) € [0, co].
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» We may write A = Sp U Tp as a union of the surface and tree
parts, respectively.

> We require that u : A — X obeys:
1. Pseudoholomorphic on the surface part—we have

JoDu=Duoj onSa.
2. A Morse gradient flow on the tree part—we have

du
I =Vf onTx.
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» We may write A = Sp U Tp as a union of the surface and tree
parts, respectively.

> We require that u : A — X obeys:
1. Pseudoholomorphic on the surface part—we have

JoDu=Duoj onSa.
2. A Morse gradient flow on the tree part—we have

cjl_? =Vf onTx.
» Of course, in practice we will actually introduce
domain-dependent perturbations of (J, f) into the

equations to avoid transversality issues which arise.
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» The basic idea, originally due to Cieliebak-Mohnke, is to
solve this problem via stabilizing divisors.

Theorem (Charest-Woodward, Auroux—-Murfioz—Presas)

Under suitable rationality assumptions on X and L, there exists a
codimension 2 symplectic D C X — L, such that any J-holomorphic
disk u : (D, dD) — (X, L) with w([u]) > 0 intersects D.

Proof sketch.

Take an approximately holomorphic section of an ample line
bundle on X concentrated on L, then perturb—the zero section
gives D. O
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» In particular, pseudoholomorphic treed disks u : A — X
will be:

1. stable—disk and sphere components have “enough” special

points, e.g. if Du(@) =0 then @ has at least 3 special
points. In order to facilitate this, we introduce interior
marked points x, e.g.

=

2. adapted to D—each marked point x maps to D, and
connected component of 1! (D) contains a marked point.



1. The Morse-Fukaya algebra A
Definition
Fixing x = (xq, ..., x4) € crit f and p € Hp(X, L) we may form

M = M(L/ D,X, ﬁ)r

the moduli space of all adapted stable pseudoholomorphic treed disks
u : A — X which

» have correct boundaries—

w(@A) c L for dA=TxU U oD,
DcCA
a disk

> have correct I/O—u(v;) = x; for v; the ith bdry point, and

D [ulcl=8.

CcA

> represent f—
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> We know that the expected dimension of the moduli space
of pseudoholomorphic disks with n marked points and
which represent g € Hy(X, L) is

(n=3)+uB)+d+1),

essentially by the definition of the Maslov class u(B). So,
treed disks of this type contribute to a counting operation
of degree 2 — d — u(p).
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> We know that the expected dimension of the moduli space
of pseudoholomorphic disks with n marked points and
which represent g € Hy(X, L) is

(n=3)+uB)+d+1),

essentially by the definition of the Maslov class u(B). So,
treed disks of this type contribute to a counting operation
of degree 2 — d — u(p).

» The expected dimension of M is then

dim M =d — 2+ I(x) - Zl(xi) + Z I(ulc).

d
=1 CcA

1



1. The Morse-Fukaya algebra A

» We could now proceed in the customary way to define the
operations ¥, if say L was equipped with a local
system—if you have seen the definition of a Fukaya
category before, you'll know that we are tantalizingly close.

» We are going to go in a slightly different direction.
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» The natural way to construct a family version of A is to
consider u : A — X with each disk boundary constrained
to a (possibly different) fiber of :
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> Suppose instead that we had chosen a Morse function f on
all of X, and arranged that f lifted a Morse function on B.

» Also for simplicity, let’s work over a simply connected
compact piece Qo C Q, away from the singular fibers of 7.



2. A family version of A

> Suppose instead that we had chosen a Morse function f on
all of X, and arranged that f lifted a Morse function on B.

» Also for simplicity, let’s work over a simply connected
compact piece Qo C Q, away from the singular fibers of 7.

> We arrange a cellular decomposition PI¥ of Qg such that:

1. each k-cell o € PI*! contains a unique g, € crity f, and
2. the union of the descending manifolds of all critical points
contained in ¢ is o itself.






2. A family version of A

> We need one final piece: the Floer-theoretic weights
2P = TP - hol(dp)

are analytic functions on X/ for each € m15(X, F;) by
parallel transport g — p.

> Recall that according to us, points of X are elements of
HY(F q; Ux), so hol is just fancy notation for evaluation.



2. A family version of A

> Actually, essentially the same construction gives analytic
charts on X: for a basis y1, ..., y, of Hi(F,), for each i
parallel transport g — p causes y; to trace out a sheet a;, to
which we in turn associate

(Tw(al) hOl()/l), L, Tw(an) hOl(yn)) e (A*)”.
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> Actually, essentially the same construction gives analytic
charts on X: for a basis y1, ..., y, of Hi(F,), for each i
parallel transport g — p causes y; to trace out a sheet a;, to
which we in turn associate

(Tw(al) hOl()/l), L, Tw(an) hOl(‘)/n)) e (A*)”.
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sheaf of universal weights
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2. A family version of A

» By suitably refining P by perturbing f, we can arrange that
the collection of functions on 7~ !(star(c)) assemble into a
sheaf of universal weights

Oan = NY(OX(;’)

» Our algebra A is now an O,-module.



2. A family version of A
Definition
For x = (x1,...,x,) € (crit f)" set
ud(x) = Z #Md+1(x0r X, ﬁ) . Z‘Bx()/
x0,p

where it is understood that the sum is taken over all (xo, §) for
which dim M41(xo, x, B) = 0.



2. A family version of A
Definition
For x = (x1,...,x,) € (crit f)" set
l’ld(x) = Z #Md+1(x0/ X, ﬁ) : Z‘Bx()/
x0,p
where it is understood that the sum is taken over all (xo, §) for

which dim M1 (xo,x, ) = 0.

Theorem

The operations u® endow A with the structure of a (curved)
Aco-algebra, i.e. for homogeneous ay, ..., a; we have

0= Z (—1)”;1‘“1_”(411,...,y”(am+1,...,am+n),...,ad)

m+n<d

with © = (=1)y"+Zizlail,



2. A family version of A

Proof.

Analyze the boundary strata of the 1-dimensional moduli
spaces M; one shows that the only possible strata are of the type




2. A family version of A

» Switching to a family setting poses some significant
technical challenges—just for example, no stabilizing
divisor is disjoint from every fiber of 7.

> So, we develop a scheme whereby divisors are turned on
and off via a system of weights.



3. An HMS comparison functor

Definition
The category Fsec is the full subcategory of ¥ = Fuk(X) of
Lagrangian sections of 7.

> Concretely and for simplicity, let {L;} C Fec be a finite
family intersecting pairwise transversely. We set

A(L; ﬂL]‘> i#]

Hom(Li, L]') = {ﬂ(L) ; = ] .



3. An HMS comparison functor

> In Fsec we compose p1 € Hom(Ly, L») and p, € Hom(L», L3)
in the usual way:

P2




3. An HMS comparison functor

» The functor C on objects—set

L € Foec — Oanfcrit f|1).



3. An HMS comparison functor
» The structure maps
o)A s C)2-4d]

now count pictures of the form (e.g. to compute y; <! x1):




3. An HMS comparison functor

» The functor C on morphisms—given p; € Hom(L;, L;+1) we
must specify

C"(p1,...,pn)" 1 C(L1) ® A% = C(Ly)[1 - n —d].

For example, given p € Hom(L1, L.,),
compute C1(p)°(y1) by counting:




3. An HMS comparison functor

» One subtlety is that, in order to obtain the functor maps we
desire, we must actually replace honest critical points of
fl1 with anchors.

» Fixing a distinguished L. € ob Fse., an anchor (path)
y :[0,1] — F, is just a path from y(0) € crit f|1 to y(1) € L.
contained wholly in F,.
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» Each input x; (from A) induces a base flow path:

X0
X1
X2
Tt(x
T((JC()) ( 1)

m(x2)
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» Each input x; (from A) induces a base flow path:

X0

X1

X2

1(x1)

t(x0)

m(x2)




3. An HMS comparison functor

» Base paths act on anchors by parallel transport through
fibers. We insert a correction by T¢(®), the area of the swept

sheet:
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3. An HMS comparison functor

Theorem

There is a curved Ac-functor

C : Feee(mt, f) — mod- A(m, f).

Proof.

We again verify the A-relations by examining boundary
strata. As an example, in the case of u° = 0, the module map
n < (x1, x2) gives a homotopy between

(yl <11 _X'1) <1 X2 and y] <1 luz(x]/ x2)'

(continued)



3. An HMS comparison functor

Proof (continued).

This corresponds to the two possible breakings:

Y1 Y1

(continued)



3. An HMS comparison functor

Proof (continued).
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