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▶ One then produces a dual torus fibration
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via a geometric recipe.
▶ The difficulty is that 𝜋 may have singular fibers, and the
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0. Review
▶ Family Floer theory builds a rigid analytic mirror 𝑋∨

0 over a
local piece 𝑄0 ⊂ 𝑄 as

𝑋∨
0 = “moduli space of its points”

(set)
=

⊔
𝑞∈𝑄0

H1(𝐹𝑞 ;𝑈Λ).

Here 𝑈Λ = val−1(0) ⊂ Λ∗ is the unitary subgroup of
Novikov field

Λ =


∞∑
𝑖=1

𝑎𝑖𝑇
𝑥𝑖 : 𝑎𝑖 ∈ k, 𝑥𝑖 ∈ R, lim

𝑖→∞
𝑥𝑖 = ∞

 .

▶ The space 𝑋∨
0 comes equipped with a comparison functor

which can be used to (try to) prove HMS.
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0. Review

▶ We take a Morse-theoretic approach; pick a suitable Morse
function 𝑓 on 𝑋.

Theorem
There is a curved 𝐴∞-functor

𝒞 : ℱsec(𝜋, 𝑓 ) → mod-𝒜(𝜋, 𝑓 ).

▶ In other words, a functor{
Fukaya category of

Lagrangian sections of 𝜋

}
→

{
𝐴∞-modules for the

Morse–Fukaya algebra of 𝜋

}
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1. The Morse–Fukaya algebra 𝒜

▶ This is an 𝐴∞-algebra; for a single Lagrangian is due to
Charest–Woodward, being in turn based on the ideas of
Cornea–Lalonde and Fukaya–Oh–Ohta–Ono.

▶ Associated to a Lagrangian 𝐿 ⊂ 𝑋 and choice of Morse
function 𝑓 : 𝐿 → R is

𝒜(𝐿, 𝑓 ) = Λ⟨crit 𝑓 ⟩,

graded by Morse index mod 2.

▶ This algebra is equipped with a family of structure maps

𝜇𝑑 : 𝒜⊗𝑑 → 𝒜[2 − 𝑑],

which we now define.
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disks. These are continuous maps

𝑢 : Δ → 𝑋

from decorated domains Δ inductively built from the disk

by attaching
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1. The Morse–Fukaya algebra 𝒜

▶ An example treed disk domain:

▶ Each edge 𝑒 is attached interior-to-interior or
boundary-to-boundary, and has a length 𝑙(𝑒) ∈ [0,∞].



1. The Morse–Fukaya algebra 𝒜

▶ We may write Δ = 𝑆Δ ∪ 𝑇Δ as a union of the surface and tree
parts, respectively.

▶ We require that 𝑢 : Δ → 𝑋 obeys:
1. Pseudoholomorphic on the surface part–we have

𝐽 ◦ D𝑢 = D𝑢 ◦ 𝑗 on 𝑆Δ.

2. A Morse gradient flow on the tree part–we have

d𝑢
d𝑡 = ∇ 𝑓 on 𝑇Δ.

▶ Of course, in practice we will actually introduce
domain-dependent perturbations of (𝐽 , 𝑓 ) into the
equations to avoid transversality issues which arise.
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1. The Morse–Fukaya algebra 𝒜

▶ The basic idea, originally due to Cieliebak–Mohnke, is to
solve this problem via stabilizing divisors.

Theorem (Charest–Woodward, Auroux–Muñoz–Presas)
Under suitable rationality assumptions on 𝑋 and 𝐿, there exists a
codimension 2 symplectic 𝐷 ⊂ 𝑋 − 𝐿, such that any 𝐽-holomorphic
disk 𝑢 : (D, 𝜕D) → (𝑋, 𝐿) with 𝜔([𝑢]) > 0 intersects 𝐷.

Proof sketch.
Take an approximately holomorphic section of an ample line
bundle on 𝑋 concentrated on 𝐿, then perturb—the zero section
gives 𝐷. □
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1. The Morse–Fukaya algebra 𝒜
▶ In particular, pseudoholomorphic treed disks 𝑢 : Δ → 𝑋

will be:

1. stable—disk and sphere components have “enough” special
points, e.g. if D𝑢( ) = 0 then has at least 3 special
points. In order to facilitate this, we introduce interior
marked points , e.g.

2. adapted to 𝐷—each marked point maps to 𝐷, and
connected component of 𝑢−1(𝐷) contains a marked point.
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1. The Morse–Fukaya algebra 𝒜
Definition
Fixing x = (𝑥0 , . . . , 𝑥𝑑) ∈ crit 𝑓 and 𝛽 ∈ H2(𝑋, 𝐿) we may form

ℳ = ℳ(𝐿, 𝐷, x, 𝛽),

the moduli space of all adapted stable pseudoholomorphic treed disks
𝑢 : Δ → 𝑋 which
▶ have correct boundaries—

𝑢(𝜕Δ) ⊂ 𝐿 for 𝜕Δ = 𝑇Δ ∪
⋃
D ⊂ Δ
a disk

𝜕D,

▶ have correct I/O—𝑢(𝑣𝑖) = 𝑥𝑖 for 𝑣𝑖 the 𝑖th bdry point, and
▶ represent 𝛽— ∑

𝐶⊂Δ
[𝑢|𝐶] = 𝛽.



1. The Morse–Fukaya algebra 𝒜

▶ We know that the expected dimension of the moduli space
of pseudoholomorphic disks with 𝑛 marked points and
which represent 𝛽 ∈ H2(𝑋, 𝐿) is

(𝑛 − 3) + 𝜇(𝛽) + (𝑑 + 1),

essentially by the definition of the Maslov class 𝜇(𝛽). So,
treed disks of this type contribute to a counting operation
of degree 2 − 𝑑 − 𝜇(𝛽).

▶ The expected dimension of ℳ is then

dimℳ = 𝑑 − 2 + 𝐼(𝑥0) −
𝑑∑
𝑖=1

𝐼(𝑥𝑖) +
∑
𝐶⊂Δ

𝐼(𝑢|𝐶).



1. The Morse–Fukaya algebra 𝒜

▶ We know that the expected dimension of the moduli space
of pseudoholomorphic disks with 𝑛 marked points and
which represent 𝛽 ∈ H2(𝑋, 𝐿) is

(𝑛 − 3) + 𝜇(𝛽) + (𝑑 + 1),

essentially by the definition of the Maslov class 𝜇(𝛽). So,
treed disks of this type contribute to a counting operation
of degree 2 − 𝑑 − 𝜇(𝛽).

▶ The expected dimension of ℳ is then

dimℳ = 𝑑 − 2 + 𝐼(𝑥0) −
𝑑∑
𝑖=1

𝐼(𝑥𝑖) +
∑
𝐶⊂Δ

𝐼(𝑢|𝐶).



1. The Morse–Fukaya algebra 𝒜

▶ We could now proceed in the customary way to define the
operations 𝜇𝑘 , if say 𝐿 was equipped with a local
system—if you have seen the definition of a Fukaya
category before, you’ll know that we are tantalizingly close.

▶ We are going to go in a slightly different direction.



2. A family version of 𝒜

▶ The natural way to construct a family version of 𝒜 is to
consider 𝑢 : Δ → 𝑋 with each disk boundary constrained
to a (possibly different) fiber of 𝜋:
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2. A family version of 𝒜

▶ Suppose instead that we had chosen a Morse function 𝑓 on
all of 𝑋, and arranged that 𝑓 lifted a Morse function on 𝐵.

▶ Also for simplicity, let’s work over a simply connected
compact piece 𝑄0 ⊂ 𝑄, away from the singular fibers of 𝜋.

▶ We arrange a cellular decomposition 𝑃[𝑘] of 𝑄0 such that:
1. each 𝑘-cell 𝜎 ∈ 𝑃[𝑘] contains a unique 𝑞𝜎 ∈ crit𝑘 𝑓 , and
2. the union of the descending manifolds of all critical points

contained in 𝜎 is 𝜎 itself.
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2. A family version of 𝒜

▶ We need one final piece: the Floer-theoretic weights

𝑧𝛽 = 𝑇𝜔(𝛽) · hol(𝜕𝛽)

are analytic functions on 𝑋∨
0 for each 𝛽 ∈ 𝜋2(𝑋, 𝐹𝑞) by

parallel transport 𝑞 → 𝑝.
▶ Recall that according to us, points of 𝑋∨

0 are elements of
H1(𝐹𝑞 ;𝑈Λ), so hol is just fancy notation for evaluation.



2. A family version of 𝒜
▶ Actually, essentially the same construction gives analytic

charts on 𝑋∨
0 : for a basis 𝛾1 , . . . , 𝛾𝑛 of H1(𝐹𝑞), for each 𝑖

parallel transport 𝑞 → 𝑝 causes 𝛾𝑖 to trace out a sheet 𝛼𝑖 , to
which we in turn associate(

𝑇𝜔(𝛼1) hol(𝛾1), . . . , 𝑇𝜔(𝛼𝑛) hol(𝛾𝑛)
)
∈ (Λ∗)𝑛 .

𝛾𝑖

𝑞𝑝
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2. A family version of 𝒜

▶ By suitably refining 𝑃 by perturbing 𝑓 , we can arrange that
the collection of functions on 𝜋−1(star(𝜎)) assemble into a
sheaf of universal weights

𝒪an = 𝜋∨
∗ (𝒪𝑋∨

0
).

▶ Our algebra 𝒜 is now an 𝒪an-module.
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2. A family version of 𝒜
Definition
For x = (𝑥1 , . . . , 𝑥𝑛) ∈ (crit 𝑓 )𝑛 set

𝜇𝑑(x) :=
∑
𝑥0 ,𝛽

#ℳ𝑑+1(𝑥0 , x, 𝛽) · 𝑧𝛽𝑥0 ,

where it is understood that the sum is taken over all (𝑥0 , 𝛽) for
which dimℳ𝑑+1(𝑥0 , x, 𝛽) = 0.

Theorem
The operations 𝜇𝑑 endow 𝒜 with the structure of a (curved)
𝐴∞-algebra, i.e. for homogeneous 𝑎1 , . . . , 𝑎𝑑 we have

0 =

∑
𝑚+𝑛≤𝑑

(−1)♥𝜇𝑑+1−𝑛(𝑎1 , . . . , 𝜇
𝑛(𝑎𝑚+1 , . . . , 𝑎𝑚+𝑛), . . . , 𝑎𝑑)

with ♥ = (−1)𝑚+∑𝑚
𝑖=1|𝑎𝑖 |.
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2. A family version of 𝒜
Proof.
Analyze the boundary strata of the 1-dimensional moduli
spaces ℳ; one shows that the only possible strata are of the type

□



2. A family version of 𝒜

▶ Switching to a family setting poses some significant
technical challenges—just for example, no stabilizing
divisor is disjoint from every fiber of 𝜋.

▶ So, we develop a scheme whereby divisors are turned on
and off via a system of weights.



3. An HMS comparison functor

Definition
The category ℱsec is the full subcategory of ℱ = Fuk(𝑋) of
Lagrangian sections of 𝜋.

▶ Concretely and for simplicity, let {𝐿𝑖} ⊂ ℱsec be a finite
family intersecting pairwise transversely. We set

Hom(𝐿𝑖 , 𝐿𝑗) =
{
Λ⟨𝐿𝑖 ∩ 𝐿 𝑗⟩ 𝑖 ≠ 𝑗

𝒜(𝐿𝑖) 𝑖 = 𝑗
.



3. An HMS comparison functor

▶ In ℱsec we compose 𝑝1 ∈ Hom(𝐿1 , 𝐿2) and 𝑝2 ∈ Hom(𝐿2 , 𝐿3)
in the usual way:

𝑝2

𝐿1

𝑝1

𝐿3

𝑝3

𝐿2



3. An HMS comparison functor

▶ The functor 𝒞 on objects—set

𝐿 ∈ ℱsec 𝒪an⟨crit 𝑓 |𝐿⟩.



3. An HMS comparison functor
▶ The structure maps

⊳𝑑−1 : 𝒞(𝐿) ⊗ 𝒜𝑑−1 → 𝒞(𝐿)[2 − 𝑑]

now count pictures of the form (e.g. to compute 𝑦1 ⊳1 𝑥1):

𝑥1

𝑦1

𝑦0

𝐿

𝐹𝑞

𝐹𝑞′



3. An HMS comparison functor

▶ The functor 𝒞 on morphisms—given 𝑝𝑖 ∈ Hom(𝐿𝑖 , 𝐿𝑖+1) we
must specify

𝒞 𝑛(𝑝1 , . . . , 𝑝𝑛)𝑑−1 : 𝒞(𝐿1) ⊗ 𝒜⊗𝑑−1 → 𝒞(𝐿𝑛)[1 − 𝑛 − 𝑑].

For example, given 𝑝 ∈ Hom(𝐿1 , 𝐿2),
compute 𝒞 1(𝑝)0(𝑦1) by counting:

𝑦1

𝑦0

𝐹𝑞𝑝

𝐿1

𝐿2



3. An HMS comparison functor

▶ One subtlety is that, in order to obtain the functor maps we
desire, we must actually replace honest critical points of
𝑓 |𝐿 with anchors.

▶ Fixing a distinguished 𝐿∗ ∈ obℱsec, an anchor (path)
𝛾 : [0, 1] → 𝐹𝑞 is just a path from 𝛾(0) ∈ crit 𝑓 |𝐿 to 𝛾(1) ∈ 𝐿∗
contained wholly in 𝐹𝑞 .



3. An HMS comparison functor

▶ Each input 𝑥𝑖 (from 𝒜) induces a base flow path:

𝑥1

𝑥2

𝑥0

𝜋(𝑥1)

𝜋(𝑥2)
𝜋(𝑥0)



3. An HMS comparison functor

▶ Each input 𝑥𝑖 (from 𝒜) induces a base flow path:

𝑥1

𝑥2

𝑥0

𝜋(𝑥1)

𝜋(𝑥2)
𝜋(𝑥0)



3. An HMS comparison functor

▶ Base paths act on anchors by parallel transport through
fibers. We insert a correction by 𝑇𝜔(𝛼), the area of the swept
sheet:

𝑞𝑝



3. An HMS comparison functor

▶ Base paths act on anchors by parallel transport through
fibers. We insert a correction by 𝑇𝜔(𝛼), the area of the swept
sheet:

𝑞𝑝



3. An HMS comparison functor

Theorem
There is a curved 𝐴∞-functor

𝒞 : ℱsec(𝜋, 𝑓 ) → mod-𝒜(𝜋, 𝑓 ).

Proof.
We again verify the 𝐴∞-relations by examining boundary
strata. As an example, in the case of 𝜇0 = 0, the module map
𝑦1 ⊳1 (𝑥1 , 𝑥2) gives a homotopy between

(𝑦1 ⊳
1 𝑥1) ⊳1 𝑥2 and 𝑦1 ⊳

1 𝜇2(𝑥1 , 𝑥2).

(continued)
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We again verify the 𝐴∞-relations by examining boundary
strata. As an example, in the case of 𝜇0 = 0, the module map
𝑦1 ⊳1 (𝑥1 , 𝑥2) gives a homotopy between

(𝑦1 ⊳
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3. An HMS comparison functor

Proof (continued).
This corresponds to the two possible breakings:

𝑥1

𝑥2

𝑦1

𝑦0

𝐿
𝑥1

𝑥2

𝑦1

𝑦0

𝐿

(continued)



3. An HMS comparison functor

Proof (continued).

𝑥1

𝑥2

𝑦1

𝑦0

𝐿

𝑥1

𝑦1

𝐿

𝑥2

𝑦0

𝐿



End


